四维标量曲率的极端性和刚性

Renato G. Bettiol, McFeely Jackson Goodman
{"title":"四维标量曲率的极端性和刚性","authors":"Renato G. Bettiol, McFeely Jackson Goodman","doi":"10.1007/s00029-023-00892-5","DOIUrl":null,"url":null,"abstract":"<p>Following Gromov, a Riemannian manifold is called area-extremal if any modification that increases scalar curvature must decrease the area of some tangent 2-plane. We prove that large classes of compact 4-manifolds, with or without boundary, with nonnegative sectional curvature are area-extremal. We also show that all regions of positive sectional curvature on 4-manifolds are locally area-extremal. These results are obtained analyzing sections in the kernel of a twisted Dirac operator constructed from pairs of metrics, and using the Finsler–Thorpe trick for sectional curvature bounds in dimension 4.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremality and rigidity for scalar curvature in dimension four\",\"authors\":\"Renato G. Bettiol, McFeely Jackson Goodman\",\"doi\":\"10.1007/s00029-023-00892-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Following Gromov, a Riemannian manifold is called area-extremal if any modification that increases scalar curvature must decrease the area of some tangent 2-plane. We prove that large classes of compact 4-manifolds, with or without boundary, with nonnegative sectional curvature are area-extremal. We also show that all regions of positive sectional curvature on 4-manifolds are locally area-extremal. These results are obtained analyzing sections in the kernel of a twisted Dirac operator constructed from pairs of metrics, and using the Finsler–Thorpe trick for sectional curvature bounds in dimension 4.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00892-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00892-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Gromov之后,黎曼流形被称为面积极值,如果任何增加标量曲率的修改必须减少某个切2平面的面积。证明了具有非负截面曲率的有边界或无边界的大类别紧致4流形是面积极值的。我们还证明了4流形上所有正截面曲率的区域都是局部面积极值的。这些结果是分析由度量对构成的扭曲狄拉克算子核中的截面,并使用4维截面曲率界的Finsler-Thorpe技巧得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremality and rigidity for scalar curvature in dimension four

Following Gromov, a Riemannian manifold is called area-extremal if any modification that increases scalar curvature must decrease the area of some tangent 2-plane. We prove that large classes of compact 4-manifolds, with or without boundary, with nonnegative sectional curvature are area-extremal. We also show that all regions of positive sectional curvature on 4-manifolds are locally area-extremal. These results are obtained analyzing sections in the kernel of a twisted Dirac operator constructed from pairs of metrics, and using the Finsler–Thorpe trick for sectional curvature bounds in dimension 4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信