三萜肽共轭物的设计和自组装及其与表皮生长因子受体和表皮生长因子受体突变受体的相互作用:硅学和体外研究

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mia I. Rico, Beatriz G. Goncalves, Hannah L. Hunt, Ipsita A. Banerjee
{"title":"三萜肽共轭物的设计和自组装及其与表皮生长因子受体和表皮生长因子受体突变受体的相互作用:硅学和体外研究","authors":"Mia I. Rico, Beatriz G. Goncalves, Hannah L. Hunt, Ipsita A. Banerjee","doi":"10.1007/s10989-023-10583-6","DOIUrl":null,"url":null,"abstract":"<p>In this work, we designed new terpenoid-peptide conjugates to target the epidermal growth factor receptor (EGFR) and its double mutant EGFR T790M/L858R which are implicated in many cancers. The peptides utilized were MEGPSKCCFSLALSH (MFSL), a new peptide sequence designed by mutating an ErbB2 targeting peptide, while the sequence VPWXE was derived from a peptide motif known to target tumor cells. Each of the peptides were conjugated to four terpenoids, 23-hydroxy betulinic acid (HB), oleanolic acid, perillic acid, and ursolic acid. Molecular docking and molecular dynamics (MD) simulations with the kinase domain of both the wild type and double mutant EGFR receptors revealed that the conjugates formed H-bonds and hydrophobic interactions with key residues in the hinge region, A-loop, and DFG motif, while in the case of the double mutant, interactions also occurred with C-terminal residues and with allosteric sites. MMGBSA analysis revealed higher binding energies for the double mutant. Six of the conjugates were synthesized and self-assembled into nanoassemblies and their impact on tumor cells expressing the wild type and double mutant receptor revealed that higher apoptosis was induced by MFSL conjugates, particularly in cells expressing the double mutant EGFR receptor. The HB and ursolate conjugates were found to be more potent against the tumor cell lines. Overall, these results indicate that these peptides and peptide conjugates can effectively bind to both the wild type and the T790M/L858R receptors to target tumor cells. Such peptide conjugates may be further potentially developed as therapeutic agents for further laboratory studies against tumors overexpressing EGFR.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Self Assembly of Tri-Terpene Peptide Conjugates and Their Interactions with EGFR and EGFR Mutant Receptors: An In Silico and In Vitro Study\",\"authors\":\"Mia I. Rico, Beatriz G. Goncalves, Hannah L. Hunt, Ipsita A. Banerjee\",\"doi\":\"10.1007/s10989-023-10583-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we designed new terpenoid-peptide conjugates to target the epidermal growth factor receptor (EGFR) and its double mutant EGFR T790M/L858R which are implicated in many cancers. The peptides utilized were MEGPSKCCFSLALSH (MFSL), a new peptide sequence designed by mutating an ErbB2 targeting peptide, while the sequence VPWXE was derived from a peptide motif known to target tumor cells. Each of the peptides were conjugated to four terpenoids, 23-hydroxy betulinic acid (HB), oleanolic acid, perillic acid, and ursolic acid. Molecular docking and molecular dynamics (MD) simulations with the kinase domain of both the wild type and double mutant EGFR receptors revealed that the conjugates formed H-bonds and hydrophobic interactions with key residues in the hinge region, A-loop, and DFG motif, while in the case of the double mutant, interactions also occurred with C-terminal residues and with allosteric sites. MMGBSA analysis revealed higher binding energies for the double mutant. Six of the conjugates were synthesized and self-assembled into nanoassemblies and their impact on tumor cells expressing the wild type and double mutant receptor revealed that higher apoptosis was induced by MFSL conjugates, particularly in cells expressing the double mutant EGFR receptor. The HB and ursolate conjugates were found to be more potent against the tumor cell lines. Overall, these results indicate that these peptides and peptide conjugates can effectively bind to both the wild type and the T790M/L858R receptors to target tumor cells. Such peptide conjugates may be further potentially developed as therapeutic agents for further laboratory studies against tumors overexpressing EGFR.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10989-023-10583-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10989-023-10583-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们设计了新的萜类肽缀合物来靶向表皮生长因子受体(EGFR)及其双突变体EGFR T790M/L858R,这与许多癌症有关。利用的肽是MEGPSKCCFSLALSH (MFSL),这是一个通过突变ErbB2靶向肽而设计的新肽序列,而序列VPWXE来源于已知的靶向肿瘤细胞的肽基序。每个肽与四种萜类化合物结合,23-羟基白桦酸(HB),齐墩果酸,紫苏酸和熊果酸。与野生型和双突变型EGFR受体激酶结构域的分子对接和分子动力学(MD)模拟显示,共轭物与铰链区、a环和DFG基序的关键残基形成了氢键和疏水相互作用,而在双突变型的情况下,与c端残基和变构位点也发生了相互作用。MMGBSA分析显示双突变体的结合能较高。其中6个偶联物被合成并自组装成纳米组件,它们对表达野生型和双突变受体的肿瘤细胞的影响表明,MFSL偶联物诱导的细胞凋亡率更高,特别是在表达双突变EGFR受体的细胞中。发现HB和熊索酸偶联物对肿瘤细胞系更有效。总之,这些结果表明这些肽和肽偶联物可以有效地结合野生型和T790M/L858R受体靶向肿瘤细胞。这种肽缀合物可能进一步发展为治疗药物,用于进一步的实验室研究,以对抗过表达EGFR的肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and Self Assembly of Tri-Terpene Peptide Conjugates and Their Interactions with EGFR and EGFR Mutant Receptors: An In Silico and In Vitro Study

Design and Self Assembly of Tri-Terpene Peptide Conjugates and Their Interactions with EGFR and EGFR Mutant Receptors: An In Silico and In Vitro Study

In this work, we designed new terpenoid-peptide conjugates to target the epidermal growth factor receptor (EGFR) and its double mutant EGFR T790M/L858R which are implicated in many cancers. The peptides utilized were MEGPSKCCFSLALSH (MFSL), a new peptide sequence designed by mutating an ErbB2 targeting peptide, while the sequence VPWXE was derived from a peptide motif known to target tumor cells. Each of the peptides were conjugated to four terpenoids, 23-hydroxy betulinic acid (HB), oleanolic acid, perillic acid, and ursolic acid. Molecular docking and molecular dynamics (MD) simulations with the kinase domain of both the wild type and double mutant EGFR receptors revealed that the conjugates formed H-bonds and hydrophobic interactions with key residues in the hinge region, A-loop, and DFG motif, while in the case of the double mutant, interactions also occurred with C-terminal residues and with allosteric sites. MMGBSA analysis revealed higher binding energies for the double mutant. Six of the conjugates were synthesized and self-assembled into nanoassemblies and their impact on tumor cells expressing the wild type and double mutant receptor revealed that higher apoptosis was induced by MFSL conjugates, particularly in cells expressing the double mutant EGFR receptor. The HB and ursolate conjugates were found to be more potent against the tumor cell lines. Overall, these results indicate that these peptides and peptide conjugates can effectively bind to both the wild type and the T790M/L858R receptors to target tumor cells. Such peptide conjugates may be further potentially developed as therapeutic agents for further laboratory studies against tumors overexpressing EGFR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信