{"title":"一类具有时变延迟的 Lipschitz 非线性离散时间系统的 H∞ 动态观测器设计","authors":"Ghali Naami, Mohamed Ouahi","doi":"10.1002/oca.3081","DOIUrl":null,"url":null,"abstract":"This study explores the development of <mjx-container aria-label=\"Menu available. Press control and space , or space\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/oca3081-math-0003.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper H Subscript infinity\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.057em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:oca:media:oca3081:oca3081-math-0003\" display=\"inline\" location=\"graphic/oca3081-math-0003.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper H Subscript infinity\" data-semantic-type=\"subscript\"><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">H</mi></mrow><mrow><mi data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\">∞</mi></mrow></msub></mrow>$$ {H}_{\\infty } $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> dynamic observer (HDO) for discrete-time nonlinear systems (DTNLS) with time-varying delay (TVD) and disturbances. The approach is to construct an augmented Lyapunov–Krasovskii function (LKF) with double summation terms, using the generalized reciprocally convex matrix inequality (GRCMI), as well as the Jensen-based inequality (JBI) and the Wirtinger-based inequality (WBI). These lead to less conservative time-dependent conditions, represented as a set of linear matrix inequalities (LMIs) that can be efficiently solved using the LMI or YALMIP toolboxes. In addition, the proposed observer includes the widely used proportional observer (PO) and proportional integral observer (PIO) as specific cases. Two examples are presented to demonstrate the validity and effectiveness of the results.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H∞ dynamic observer design for a class of Lipschitz nonlinear discrete-time systems with time varying delays\",\"authors\":\"Ghali Naami, Mohamed Ouahi\",\"doi\":\"10.1002/oca.3081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the development of <mjx-container aria-label=\\\"Menu available. Press control and space , or space\\\" ctxtmenu_counter=\\\"0\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/oca3081-math-0003.png\\\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper H Subscript infinity\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.057em;\\\"><mjx-mrow size=\\\"s\\\"><mjx-mi data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:oca:media:oca3081:oca3081-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/oca3081-math-0003.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper H Subscript infinity\\\" data-semantic-type=\\\"subscript\\\"><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">H</mi></mrow><mrow><mi data-semantic-=\\\"\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\">∞</mi></mrow></msub></mrow>$$ {H}_{\\\\infty } $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> dynamic observer (HDO) for discrete-time nonlinear systems (DTNLS) with time-varying delay (TVD) and disturbances. The approach is to construct an augmented Lyapunov–Krasovskii function (LKF) with double summation terms, using the generalized reciprocally convex matrix inequality (GRCMI), as well as the Jensen-based inequality (JBI) and the Wirtinger-based inequality (WBI). These lead to less conservative time-dependent conditions, represented as a set of linear matrix inequalities (LMIs) that can be efficiently solved using the LMI or YALMIP toolboxes. In addition, the proposed observer includes the widely used proportional observer (PO) and proportional integral observer (PIO) as specific cases. Two examples are presented to demonstrate the validity and effectiveness of the results.\",\"PeriodicalId\":501055,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
H∞ dynamic observer design for a class of Lipschitz nonlinear discrete-time systems with time varying delays
This study explores the development of dynamic observer (HDO) for discrete-time nonlinear systems (DTNLS) with time-varying delay (TVD) and disturbances. The approach is to construct an augmented Lyapunov–Krasovskii function (LKF) with double summation terms, using the generalized reciprocally convex matrix inequality (GRCMI), as well as the Jensen-based inequality (JBI) and the Wirtinger-based inequality (WBI). These lead to less conservative time-dependent conditions, represented as a set of linear matrix inequalities (LMIs) that can be efficiently solved using the LMI or YALMIP toolboxes. In addition, the proposed observer includes the widely used proportional observer (PO) and proportional integral observer (PIO) as specific cases. Two examples are presented to demonstrate the validity and effectiveness of the results.