生成函数是圆周图中生根森林数量的有理数

U. P. Kamalov, A. B. Kutbaev, A. D. Mednykh
{"title":"生成函数是圆周图中生根森林数量的有理数","authors":"U. P. Kamalov, A. B. Kutbaev, A. D. Mednykh","doi":"10.1134/s1055134423040041","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider the generating function <span>\\(\\Phi \\)</span> for the number\n<span>\\(f_{\\Gamma }(n) \\)</span> of rooted spanning forests in the circulant graph\n<span>\\(\\Gamma \\)</span>, where <span>\\(\\Phi (x)= \\sum _{n=1}^{\\infty } f_{\\Gamma }(n) x^n\\)</span> and either <span>\\(\\Gamma =C_n(s_1,s_2,\\dots ,s_k) \\)</span> or <span>\\(\\Gamma =C_{2n}(s_1,s_2,\\dots ,s_k,n) \\)</span>. We show that <span>\\(\\Phi \\)</span> is a rational function with integer coefficients that\nsatisfies the condition <span>\\(\\Phi (x)=-\\Phi (1/x) \\)</span>. We illustrate this result by a series of examples.\n</p>","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Generating Function is Rational for the Number of Rooted Forests in a Circulant Graph\",\"authors\":\"U. P. Kamalov, A. B. Kutbaev, A. D. Mednykh\",\"doi\":\"10.1134/s1055134423040041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider the generating function <span>\\\\(\\\\Phi \\\\)</span> for the number\\n<span>\\\\(f_{\\\\Gamma }(n) \\\\)</span> of rooted spanning forests in the circulant graph\\n<span>\\\\(\\\\Gamma \\\\)</span>, where <span>\\\\(\\\\Phi (x)= \\\\sum _{n=1}^{\\\\infty } f_{\\\\Gamma }(n) x^n\\\\)</span> and either <span>\\\\(\\\\Gamma =C_n(s_1,s_2,\\\\dots ,s_k) \\\\)</span> or <span>\\\\(\\\\Gamma =C_{2n}(s_1,s_2,\\\\dots ,s_k,n) \\\\)</span>. We show that <span>\\\\(\\\\Phi \\\\)</span> is a rational function with integer coefficients that\\nsatisfies the condition <span>\\\\(\\\\Phi (x)=-\\\\Phi (1/x) \\\\)</span>. We illustrate this result by a series of examples.\\n</p>\",\"PeriodicalId\":39997,\"journal\":{\"name\":\"Siberian Advances in Mathematics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Advances in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1055134423040041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1055134423040041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑循环图\(\Gamma \)中有根跨越林个数\(f_{\Gamma }(n) \)的生成函数\(\Phi \),其中\(\Phi (x)= \sum _{n=1}^{\infty } f_{\Gamma }(n) x^n\)和\(\Gamma =C_n(s_1,s_2,\dots ,s_k) \)或\(\Gamma =C_{2n}(s_1,s_2,\dots ,s_k,n) \)。我们证明\(\Phi \)是一个具有整数系数的有理函数,它满足条件\(\Phi (x)=-\Phi (1/x) \)。我们用一系列的例子来说明这个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Generating Function is Rational for the Number of Rooted Forests in a Circulant Graph

Abstract

We consider the generating function \(\Phi \) for the number \(f_{\Gamma }(n) \) of rooted spanning forests in the circulant graph \(\Gamma \), where \(\Phi (x)= \sum _{n=1}^{\infty } f_{\Gamma }(n) x^n\) and either \(\Gamma =C_n(s_1,s_2,\dots ,s_k) \) or \(\Gamma =C_{2n}(s_1,s_2,\dots ,s_k,n) \). We show that \(\Phi \) is a rational function with integer coefficients that satisfies the condition \(\Phi (x)=-\Phi (1/x) \). We illustrate this result by a series of examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siberian Advances in Mathematics
Siberian Advances in Mathematics Mathematics-Mathematics (all)
CiteScore
0.70
自引率
0.00%
发文量
17
期刊介绍: Siberian Advances in Mathematics  is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信