四维空间中的 $mathcal{N}=3$ 共形超空间

Sergei M. Kuzenko, Emmanouil S. N. Raptakis
{"title":"四维空间中的 $mathcal{N}=3$ 共形超空间","authors":"Sergei M. Kuzenko, Emmanouil S. N. Raptakis","doi":"arxiv-2312.07242","DOIUrl":null,"url":null,"abstract":"We develop a superspace formulation for ${\\cal N}=3$ conformal supergravity\nin four spacetime dimensions as a gauge theory of the superconformal group\n$\\mathsf{SU}(2,2|3)$. Upon imposing certain covariant constraints, the algebra\nof conformally covariant derivatives $\\nabla_A =\n(\\nabla_a,\\nabla_\\alpha^i,\\bar{\\nabla}_i^{\\dot \\alpha})$ is shown to be\ndetermined in terms of a single primary chiral spinor superfield, the\nsuper-Weyl spinor $W_\\alpha$ of dimension $+1/2$ and its conjugate. Associated\nwith $W_\\alpha$ is its primary descendant $B^i{}_j$ of dimension $+2$, the\nsuper-Bach tensor, which determines the equation of motion for conformal\nsupergravity. As an application of this construction, we present two different\nbut equivalent action principles for ${\\cal N}=3$ conformal supergravity. We\ndescribe the model for linearised $\\mathcal{N}=3$ conformal supergravity in an\narbitrary conformally flat background and demonstrate that it possesses\n$\\mathsf{U}(1)$ duality invariance. Additionally, upon degauging certain local\nsymmetries, our superspace geometry is shown to reduce to the $\\mathsf{U}(3)$\nsuperspace constructed by Howe more than four decades ago. Further degauging\nproves to lead to a new superspace formalism, called $\\mathsf{SU}(3) $\nsuperspace, which can also be used to describe ${\\mathcal N}=3$ conformal\nsupergravity. Our conformal superspace setting opens up the possibility to\nformulate the dynamics of the off-shell ${\\mathcal N}=3$ super Yang-Mills\ntheory coupled to conformal supergravity.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\mathcal{N}=3$ conformal superspace in four dimensions\",\"authors\":\"Sergei M. Kuzenko, Emmanouil S. N. Raptakis\",\"doi\":\"arxiv-2312.07242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a superspace formulation for ${\\\\cal N}=3$ conformal supergravity\\nin four spacetime dimensions as a gauge theory of the superconformal group\\n$\\\\mathsf{SU}(2,2|3)$. Upon imposing certain covariant constraints, the algebra\\nof conformally covariant derivatives $\\\\nabla_A =\\n(\\\\nabla_a,\\\\nabla_\\\\alpha^i,\\\\bar{\\\\nabla}_i^{\\\\dot \\\\alpha})$ is shown to be\\ndetermined in terms of a single primary chiral spinor superfield, the\\nsuper-Weyl spinor $W_\\\\alpha$ of dimension $+1/2$ and its conjugate. Associated\\nwith $W_\\\\alpha$ is its primary descendant $B^i{}_j$ of dimension $+2$, the\\nsuper-Bach tensor, which determines the equation of motion for conformal\\nsupergravity. As an application of this construction, we present two different\\nbut equivalent action principles for ${\\\\cal N}=3$ conformal supergravity. We\\ndescribe the model for linearised $\\\\mathcal{N}=3$ conformal supergravity in an\\narbitrary conformally flat background and demonstrate that it possesses\\n$\\\\mathsf{U}(1)$ duality invariance. Additionally, upon degauging certain local\\nsymmetries, our superspace geometry is shown to reduce to the $\\\\mathsf{U}(3)$\\nsuperspace constructed by Howe more than four decades ago. Further degauging\\nproves to lead to a new superspace formalism, called $\\\\mathsf{SU}(3) $\\nsuperspace, which can also be used to describe ${\\\\mathcal N}=3$ conformal\\nsupergravity. Our conformal superspace setting opens up the possibility to\\nformulate the dynamics of the off-shell ${\\\\mathcal N}=3$ super Yang-Mills\\ntheory coupled to conformal supergravity.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.07242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.07242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为超共形群$\mathsf{SU}(2,2|3)$的规范理论,我们发展了四时空维度中${\cal N}=3$共形超引力的超空间公式。在施加一定的协变约束后,共形协变导数$\nabla_A =(\nabla_a,\nabla_\alpha^i,\bar{\nabla}_i^{\dot \alpha})$的代数被证明是由单个主手旋量超场,维度为$+1/2$的超weyl旋量$W_\alpha$及其共轭确定的。与$W_\alpha$相关的是它的主要后代$B^i{}_j$维$+2$,超巴赫张量,它决定了共形超重力的运动方程。作为这一构造的应用,我们给出了${\cal N}=3$共形超重力的两个不同但等效的作用原理。本文描述了任意共形平坦背景下线性化$\mathcal{N}=3$共形超重力模型,并证明了该模型具有$\mathsf{U}(1)$对偶不变性。此外,在去除某些局部对称性后,我们的超空间几何被证明可以简化为Howe在四十多年前构建的$\mathsf{U}(3)$超空间。进一步的脱规被证明会导致一个新的超空间形式,称为$\mathsf{SU}(3) $超空间,它也可以用来描述${\mathcal N}=3$共形超重力。我们的共形超空间设置开启了表述脱壳理论${\mathcal N}=3$与共形超引力耦合的超杨-米尔斯理论动力学的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathcal{N}=3$ conformal superspace in four dimensions
We develop a superspace formulation for ${\cal N}=3$ conformal supergravity in four spacetime dimensions as a gauge theory of the superconformal group $\mathsf{SU}(2,2|3)$. Upon imposing certain covariant constraints, the algebra of conformally covariant derivatives $\nabla_A = (\nabla_a,\nabla_\alpha^i,\bar{\nabla}_i^{\dot \alpha})$ is shown to be determined in terms of a single primary chiral spinor superfield, the super-Weyl spinor $W_\alpha$ of dimension $+1/2$ and its conjugate. Associated with $W_\alpha$ is its primary descendant $B^i{}_j$ of dimension $+2$, the super-Bach tensor, which determines the equation of motion for conformal supergravity. As an application of this construction, we present two different but equivalent action principles for ${\cal N}=3$ conformal supergravity. We describe the model for linearised $\mathcal{N}=3$ conformal supergravity in an arbitrary conformally flat background and demonstrate that it possesses $\mathsf{U}(1)$ duality invariance. Additionally, upon degauging certain local symmetries, our superspace geometry is shown to reduce to the $\mathsf{U}(3)$ superspace constructed by Howe more than four decades ago. Further degauging proves to lead to a new superspace formalism, called $\mathsf{SU}(3) $ superspace, which can also be used to describe ${\mathcal N}=3$ conformal supergravity. Our conformal superspace setting opens up the possibility to formulate the dynamics of the off-shell ${\mathcal N}=3$ super Yang-Mills theory coupled to conformal supergravity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信