电动力学和几何连续介质力学

Reuven Segev
{"title":"电动力学和几何连续介质力学","authors":"Reuven Segev","doi":"arxiv-2312.07978","DOIUrl":null,"url":null,"abstract":"This paper offers an informal instructive introduction to some of the main\nnotions of geometric continuum mechanics for the case of smooth fields. We use\na metric invariant stress theory of continuum mechanics to formulate a simple\ngeneralization of the fields of electrodynamics and Maxwell's equations to\ngeneral differentiable manifolds of any dimension, thus viewing generalized\nelectrodynamics as a special case of continuum mechanics. The basic kinematic\nvariable is the potential, which is represented as a $p$-form in an\n$n$-dimensional spacetime. The stress for the case of generalized\nelectrodynamics is assumed to be represented by an $(n-p-1)$-form, a\ngeneralization of the Maxwell $2$-form.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrodynamics and Geometric Continuum Mechanics\",\"authors\":\"Reuven Segev\",\"doi\":\"arxiv-2312.07978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper offers an informal instructive introduction to some of the main\\nnotions of geometric continuum mechanics for the case of smooth fields. We use\\na metric invariant stress theory of continuum mechanics to formulate a simple\\ngeneralization of the fields of electrodynamics and Maxwell's equations to\\ngeneral differentiable manifolds of any dimension, thus viewing generalized\\nelectrodynamics as a special case of continuum mechanics. The basic kinematic\\nvariable is the potential, which is represented as a $p$-form in an\\n$n$-dimensional spacetime. The stress for the case of generalized\\nelectrodynamics is assumed to be represented by an $(n-p-1)$-form, a\\ngeneralization of the Maxwell $2$-form.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.07978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.07978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对光滑场情况下的几何连续介质力学的一些主要概念作了非正式的、有指导意义的介绍。我们利用连续介质力学的度量不变应力理论,将电动力学场和麦克斯韦方程组简单地推广到任意维的一般可微流形,从而将广义电动力学看作连续介质力学的一个特例。基本的运动学变量是势,它在n维时空中以p的形式表示。广义电动力学的应力被假定为$(n-p-1)$-形式,即麦克斯韦$2 -形式的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrodynamics and Geometric Continuum Mechanics
This paper offers an informal instructive introduction to some of the main notions of geometric continuum mechanics for the case of smooth fields. We use a metric invariant stress theory of continuum mechanics to formulate a simple generalization of the fields of electrodynamics and Maxwell's equations to general differentiable manifolds of any dimension, thus viewing generalized electrodynamics as a special case of continuum mechanics. The basic kinematic variable is the potential, which is represented as a $p$-form in an $n$-dimensional spacetime. The stress for the case of generalized electrodynamics is assumed to be represented by an $(n-p-1)$-form, a generalization of the Maxwell $2$-form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信