标量场在黎曼和伪黎曼扩展度量中的薛定谔演化

Z. Haba
{"title":"标量场在黎曼和伪黎曼扩展度量中的薛定谔演化","authors":"Z. Haba","doi":"arxiv-2312.07677","DOIUrl":null,"url":null,"abstract":"We study the quantum field theory (QFT) of a scalar field in the\nSchr\\\"odinger picture in the functional formulation. We derive a formula for the evolution kernel in a flat expanding metric. We\ndiscuss a transition between Riemannian and pseudoRiemannian metrics (signature\ninversion). We express the real time Schr\\\"odinger evolution by the Brownian\nmotion (Feynman-Kac formula). We discuss the Feynman integral for a scalar\nfield in a radiation background. We show that the unitary Schr\\\"odinger\nevolution for positive time can go over for negative time into a dissipative\nevolution described by diffusive paths.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schrödinger evolution of a scalar field in Riemannian and pseudoRiemannian expanding metrics\",\"authors\":\"Z. Haba\",\"doi\":\"arxiv-2312.07677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the quantum field theory (QFT) of a scalar field in the\\nSchr\\\\\\\"odinger picture in the functional formulation. We derive a formula for the evolution kernel in a flat expanding metric. We\\ndiscuss a transition between Riemannian and pseudoRiemannian metrics (signature\\ninversion). We express the real time Schr\\\\\\\"odinger evolution by the Brownian\\nmotion (Feynman-Kac formula). We discuss the Feynman integral for a scalar\\nfield in a radiation background. We show that the unitary Schr\\\\\\\"odinger\\nevolution for positive time can go over for negative time into a dissipative\\nevolution described by diffusive paths.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.07677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.07677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了泛函公式中薛定谔图中标量场的量子场论(QFT)。我们导出了平面展开度规中演化核的一个公式。我们讨论黎曼和伪黎曼度量之间的转换(签名反转)。我们用布朗运动(Feynman-Kac公式)来表示实时薛定谔演化。讨论了辐射背景下标量场的费曼积分。我们证明了正时间下的幺正Schr ' odingevolution可以在负时间下过渡到由扩散路径描述的耗散演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schrödinger evolution of a scalar field in Riemannian and pseudoRiemannian expanding metrics
We study the quantum field theory (QFT) of a scalar field in the Schr\"odinger picture in the functional formulation. We derive a formula for the evolution kernel in a flat expanding metric. We discuss a transition between Riemannian and pseudoRiemannian metrics (signature inversion). We express the real time Schr\"odinger evolution by the Brownian motion (Feynman-Kac formula). We discuss the Feynman integral for a scalar field in a radiation background. We show that the unitary Schr\"odinger evolution for positive time can go over for negative time into a dissipative evolution described by diffusive paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信