{"title":"磁性薄膜中的天融收缩和膨胀动力学","authors":"Eugene M. Chudnovsky","doi":"10.1063/10.0022367","DOIUrl":null,"url":null,"abstract":"Contraction and expansion of skyrmions in ferromagnetic films are investigated. In centrosymmetric systems, the dynamics of a collapsing skyrmion is driven by dissipation. The collapse time has a minimum on the damping constant. In systems with broken inversion symmetry, the evolution of skyrmions toward equilibrium size is driven by the Dzyaloshinskii–Moriya interaction. Expressions describing the time dependence of the skyrmion size are derived and their implications for skyrmion-based information processing are discussed.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"152 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of skyrmion contraction and expansion in a magnetic film\",\"authors\":\"Eugene M. Chudnovsky\",\"doi\":\"10.1063/10.0022367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contraction and expansion of skyrmions in ferromagnetic films are investigated. In centrosymmetric systems, the dynamics of a collapsing skyrmion is driven by dissipation. The collapse time has a minimum on the damping constant. In systems with broken inversion symmetry, the evolution of skyrmions toward equilibrium size is driven by the Dzyaloshinskii–Moriya interaction. Expressions describing the time dependence of the skyrmion size are derived and their implications for skyrmion-based information processing are discussed.\",\"PeriodicalId\":18077,\"journal\":{\"name\":\"Low Temperature Physics\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/10.0022367\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0022367","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Dynamics of skyrmion contraction and expansion in a magnetic film
Contraction and expansion of skyrmions in ferromagnetic films are investigated. In centrosymmetric systems, the dynamics of a collapsing skyrmion is driven by dissipation. The collapse time has a minimum on the damping constant. In systems with broken inversion symmetry, the evolution of skyrmions toward equilibrium size is driven by the Dzyaloshinskii–Moriya interaction. Expressions describing the time dependence of the skyrmion size are derived and their implications for skyrmion-based information processing are discussed.
期刊介绍:
Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies.
Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.