全息屏幕封存

Aidan Chatwin-Davies, Pompey Leung, Grant N. Remmen
{"title":"全息屏幕封存","authors":"Aidan Chatwin-Davies, Pompey Leung, Grant N. Remmen","doi":"arxiv-2312.06750","DOIUrl":null,"url":null,"abstract":"Holographic screens are codimension-one hypersurfaces that extend the notion\nof apparent horizons to general (non-black hole) spacetimes and that display\ninteresting thermodynamic properties. We show that if a spacetime contains a\ncodimension-two, boundary-homologous, minimal extremal spacelike surface $X$\n(known as an HRT surface in AdS/CFT), then any holographic screens are\nsequestered to the causal wedges of $X$. That is, any single connected\ncomponent of a holographic screen can be located in at most one of the causal\nfuture, causal past, inner wedge, or outer wedge of $X$. We comment on how this\nresult informs possible coarse grained entropic interpretations of generic\nholographic screens, as well as on connections to semiclassical objects such as\nquantum extremal surfaces.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holographic Screen Sequestration\",\"authors\":\"Aidan Chatwin-Davies, Pompey Leung, Grant N. Remmen\",\"doi\":\"arxiv-2312.06750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Holographic screens are codimension-one hypersurfaces that extend the notion\\nof apparent horizons to general (non-black hole) spacetimes and that display\\ninteresting thermodynamic properties. We show that if a spacetime contains a\\ncodimension-two, boundary-homologous, minimal extremal spacelike surface $X$\\n(known as an HRT surface in AdS/CFT), then any holographic screens are\\nsequestered to the causal wedges of $X$. That is, any single connected\\ncomponent of a holographic screen can be located in at most one of the causal\\nfuture, causal past, inner wedge, or outer wedge of $X$. We comment on how this\\nresult informs possible coarse grained entropic interpretations of generic\\nholographic screens, as well as on connections to semiclassical objects such as\\nquantum extremal surfaces.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.06750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.06750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全息屏幕是余维一的超表面,它将视视界的概念扩展到一般(非黑洞)时空,并显示出有趣的热力学性质。我们证明,如果一个时空包含一个二维、边界同源的最小极值类空间曲面$X$(在AdS/CFT中称为HRT曲面),那么任何全息屏幕都被隔离到$X$的因果楔上。也就是说,全息屏幕的任何单个连接组件最多可以位于X的因果未来、因果过去、内楔或外楔中的一个。我们评论了这一结果如何告知通用全息屏幕可能的粗粒度熵解释,以及与半经典物体(如量子极值表面)的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holographic Screen Sequestration
Holographic screens are codimension-one hypersurfaces that extend the notion of apparent horizons to general (non-black hole) spacetimes and that display interesting thermodynamic properties. We show that if a spacetime contains a codimension-two, boundary-homologous, minimal extremal spacelike surface $X$ (known as an HRT surface in AdS/CFT), then any holographic screens are sequestered to the causal wedges of $X$. That is, any single connected component of a holographic screen can be located in at most one of the causal future, causal past, inner wedge, or outer wedge of $X$. We comment on how this result informs possible coarse grained entropic interpretations of generic holographic screens, as well as on connections to semiclassical objects such as quantum extremal surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信