受副热带锋南北移动影响的阿古哈斯洋流动力学

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY
Huan Mei, Jianxin Dong, Xiangbai Wu
{"title":"受副热带锋南北移动影响的阿古哈斯洋流动力学","authors":"Huan Mei, Jianxin Dong, Xiangbai Wu","doi":"10.1175/jpo-d-23-0078.1","DOIUrl":null,"url":null,"abstract":"\nThe influence of meridional shift of the oceanic subtropical front (STF) on the Agulhas Current (AC) regime shifts is studied using satellite altimeter data and a 1.5-layer ocean model. The satellite observations suggest the northward shift of the STF leads to the AC leaping across the gap with little Agulhas leakage, and the southward shift of the STF mainly results in the AC intruding into the Atlantic Ocean in the forms of a loop current and an eddy-shedding path, while there are three flow patterns of AC for moderate latitude of the STF. The ocean model results suggest no hysteresis (associated with multiple equilibrium states) exists in the AC system. The model reproduces similar AC regimes depending on different gap widths as in the observations, and model results can be used to explain the observed Agulhas leakage well. We also present the parameter space of the critical AC strength that results in different AC flow patterns as a function of the gap width. The vorticity dynamics of the AC regime shift suggests that the β term is mainly balanced by the viscosity term for the AC in the leaping and loop current paths, while the β and instantaneous vorticity terms are mainly balanced by the advection and viscosity terms for the AC in the eddy-shedding path. These findings help explain the dynamics of the AC flowing across the gateway beyond the tip of Africa affected by the north–south shift of the STF in the leaping regime or penetrating regime.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":"348 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of the Agulhas Current Influenced by the North–South Shift of Subtropical Front\",\"authors\":\"Huan Mei, Jianxin Dong, Xiangbai Wu\",\"doi\":\"10.1175/jpo-d-23-0078.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe influence of meridional shift of the oceanic subtropical front (STF) on the Agulhas Current (AC) regime shifts is studied using satellite altimeter data and a 1.5-layer ocean model. The satellite observations suggest the northward shift of the STF leads to the AC leaping across the gap with little Agulhas leakage, and the southward shift of the STF mainly results in the AC intruding into the Atlantic Ocean in the forms of a loop current and an eddy-shedding path, while there are three flow patterns of AC for moderate latitude of the STF. The ocean model results suggest no hysteresis (associated with multiple equilibrium states) exists in the AC system. The model reproduces similar AC regimes depending on different gap widths as in the observations, and model results can be used to explain the observed Agulhas leakage well. We also present the parameter space of the critical AC strength that results in different AC flow patterns as a function of the gap width. The vorticity dynamics of the AC regime shift suggests that the β term is mainly balanced by the viscosity term for the AC in the leaping and loop current paths, while the β and instantaneous vorticity terms are mainly balanced by the advection and viscosity terms for the AC in the eddy-shedding path. These findings help explain the dynamics of the AC flowing across the gateway beyond the tip of Africa affected by the north–south shift of the STF in the leaping regime or penetrating regime.\",\"PeriodicalId\":56115,\"journal\":{\"name\":\"Journal of Physical Oceanography\",\"volume\":\"348 3\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jpo-d-23-0078.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0078.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

利用卫星高度计资料和1.5层海洋模式研究了海洋副热带锋(STF)经向移动对阿古拉斯流(AC)环流变化的影响。卫星观测结果表明,STF向北移动导致AC跃过间隙,而Agulhas漏量较小;STF向南移动主要导致AC以环流和漩涡脱落路径侵入大西洋,而在STF中纬度,AC有三种流动模式。海洋模式的结果表明,在交流系统中不存在迟滞现象(与多种平衡状态有关)。该模型根据不同的间隙宽度再现了与观测值相似的AC状态,模型结果可以很好地解释观测到的Agulhas泄漏。我们还提出了导致不同交流流动模式的临界交流强度的参数空间作为间隙宽度的函数。涡旋动力学表明,在跳变和环流路径上,β项主要由黏性项平衡,而在涡脱路径上,β和瞬时涡量项主要由平流和黏性项平衡。这些发现有助于解释在跳跃状态或穿透状态下,在STF南北向移动的影响下,非洲顶端以外的门户地区的AC流动的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of the Agulhas Current Influenced by the North–South Shift of Subtropical Front
The influence of meridional shift of the oceanic subtropical front (STF) on the Agulhas Current (AC) regime shifts is studied using satellite altimeter data and a 1.5-layer ocean model. The satellite observations suggest the northward shift of the STF leads to the AC leaping across the gap with little Agulhas leakage, and the southward shift of the STF mainly results in the AC intruding into the Atlantic Ocean in the forms of a loop current and an eddy-shedding path, while there are three flow patterns of AC for moderate latitude of the STF. The ocean model results suggest no hysteresis (associated with multiple equilibrium states) exists in the AC system. The model reproduces similar AC regimes depending on different gap widths as in the observations, and model results can be used to explain the observed Agulhas leakage well. We also present the parameter space of the critical AC strength that results in different AC flow patterns as a function of the gap width. The vorticity dynamics of the AC regime shift suggests that the β term is mainly balanced by the viscosity term for the AC in the leaping and loop current paths, while the β and instantaneous vorticity terms are mainly balanced by the advection and viscosity terms for the AC in the eddy-shedding path. These findings help explain the dynamics of the AC flowing across the gateway beyond the tip of Africa affected by the north–south shift of the STF in the leaping regime or penetrating regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信