初步确定圆形轨道上连续推力航天器的推力和轨道要素

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Shuailong Zhao, Xuefeng Tao, Zhi Li
{"title":"初步确定圆形轨道上连续推力航天器的推力和轨道要素","authors":"Shuailong Zhao, Xuefeng Tao, Zhi Li","doi":"10.3390/aerospace10121012","DOIUrl":null,"url":null,"abstract":"Continuous thrust spacecraft in circular orbits have had a great influence on the identification and cataloging of space targets. Gaussian-type orbital element variational equations are simplified and approximated. Ground-based radar observation datasets are transformed into orbit elements datasets. The initial thrust and orbit elements are obtained by optimally solving the spatial parameter error sum of squares minimization problem with the Levenberg–Marquardt method. The simulation analysis is carried out under the high-precision orbit model, and the solution error of tangential acceleration is around 5 × 10−7 m/s2, and that of normal acceleration is around 3 × 10−6 m/s2; the accuracy of the semi-major axis is 350 m, and the accuracy of inclination is 0.095°. The method is applicable to the preliminary identification of thrust and orbit elements for circular orbit continuous thrust spacecraft and can provide reliable initial values for the subsequent precision orbit determination of such spacecraft.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"31 32","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Initial Identification of Thrust and Orbit Elements for Continuous Thrust Spacecraft in Circular Orbit\",\"authors\":\"Shuailong Zhao, Xuefeng Tao, Zhi Li\",\"doi\":\"10.3390/aerospace10121012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous thrust spacecraft in circular orbits have had a great influence on the identification and cataloging of space targets. Gaussian-type orbital element variational equations are simplified and approximated. Ground-based radar observation datasets are transformed into orbit elements datasets. The initial thrust and orbit elements are obtained by optimally solving the spatial parameter error sum of squares minimization problem with the Levenberg–Marquardt method. The simulation analysis is carried out under the high-precision orbit model, and the solution error of tangential acceleration is around 5 × 10−7 m/s2, and that of normal acceleration is around 3 × 10−6 m/s2; the accuracy of the semi-major axis is 350 m, and the accuracy of inclination is 0.095°. The method is applicable to the preliminary identification of thrust and orbit elements for circular orbit continuous thrust spacecraft and can provide reliable initial values for the subsequent precision orbit determination of such spacecraft.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"31 32\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10121012\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10121012","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

圆形轨道上的连续推力航天器对空间目标的识别和编目产生了很大的影响。对高斯型轨道元变分方程进行了简化和近似。将地面雷达观测数据集转换为轨道要素数据集。利用Levenberg-Marquardt方法优化求解空间参数误差平方和最小化问题,得到初始推力和轨道元素。在高精度轨道模型下进行仿真分析,切向加速度解误差约为5 × 10−7 m/s2,法向加速度解误差约为3 × 10−6 m/s2;半长轴精度为350 m,倾角精度为0.095°。该方法适用于圆轨道连续推力航天器推力和轨道要素的初步辨识,可为后续圆轨道连续推力航天器的精确定轨提供可靠的初始值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Initial Identification of Thrust and Orbit Elements for Continuous Thrust Spacecraft in Circular Orbit
Continuous thrust spacecraft in circular orbits have had a great influence on the identification and cataloging of space targets. Gaussian-type orbital element variational equations are simplified and approximated. Ground-based radar observation datasets are transformed into orbit elements datasets. The initial thrust and orbit elements are obtained by optimally solving the spatial parameter error sum of squares minimization problem with the Levenberg–Marquardt method. The simulation analysis is carried out under the high-precision orbit model, and the solution error of tangential acceleration is around 5 × 10−7 m/s2, and that of normal acceleration is around 3 × 10−6 m/s2; the accuracy of the semi-major axis is 350 m, and the accuracy of inclination is 0.095°. The method is applicable to the preliminary identification of thrust and orbit elements for circular orbit continuous thrust spacecraft and can provide reliable initial values for the subsequent precision orbit determination of such spacecraft.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信