M. Al-Aseebee, A. Ketata, Ahmed E. Gomaa, Olfa Moussa, Zied Driss, M. Abid, A. Naje, Haitham H. Emaish
{"title":"废植物油生物柴油在拖拉机发动机上的利用模型","authors":"M. Al-Aseebee, A. Ketata, Ahmed E. Gomaa, Olfa Moussa, Zied Driss, M. Abid, A. Naje, Haitham H. Emaish","doi":"10.12911/22998993/173564","DOIUrl":null,"url":null,"abstract":"Biodiesel is regarded as a clean fuel alternative to fossil diesel fuel for fewer pollutant emissions of internal combustion engines. The biodiesel type can be made from waste frying oil, thus it has to be done right. Waste vegetable oil can be provided for free or at a low cost by restaurants and food processors that often use frying oils. Animal fat is also available for free or for a nominal fee from grocery stores, restaurants, and butchers who use lots of fats in their cooking. The methyl ester of oleic acid methyl ester (OAME) biodiesel was produced from used vegetable oil using the transesterification process in order to compare the performance of the 67 kW KUBOTA tractor diesel engine when utilizing OAME and fossil diesel. OAME biofuel was used without being mixed. The engine’s reli - ability metrics and important indicators, including the brake torque, indicated power, brake-specific fuel consump - tion (BSFC) and burn duration, were identified. Optimal implementation was met by fossil diesel and the tested characteristics were very close. The OAME biofuel performs better in terms of volumetric efficiency and duration of combustion than the conventional diesel. The decision to choose a specific biofuel that is produced from a par - ticular source so largely hinges on its availability and economic feasibility wherever it is used.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":"24 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Waste Vegetable Oil Biodiesel for Tractor Engine Utilization\",\"authors\":\"M. Al-Aseebee, A. Ketata, Ahmed E. Gomaa, Olfa Moussa, Zied Driss, M. Abid, A. Naje, Haitham H. Emaish\",\"doi\":\"10.12911/22998993/173564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biodiesel is regarded as a clean fuel alternative to fossil diesel fuel for fewer pollutant emissions of internal combustion engines. The biodiesel type can be made from waste frying oil, thus it has to be done right. Waste vegetable oil can be provided for free or at a low cost by restaurants and food processors that often use frying oils. Animal fat is also available for free or for a nominal fee from grocery stores, restaurants, and butchers who use lots of fats in their cooking. The methyl ester of oleic acid methyl ester (OAME) biodiesel was produced from used vegetable oil using the transesterification process in order to compare the performance of the 67 kW KUBOTA tractor diesel engine when utilizing OAME and fossil diesel. OAME biofuel was used without being mixed. The engine’s reli - ability metrics and important indicators, including the brake torque, indicated power, brake-specific fuel consump - tion (BSFC) and burn duration, were identified. Optimal implementation was met by fossil diesel and the tested characteristics were very close. The OAME biofuel performs better in terms of volumetric efficiency and duration of combustion than the conventional diesel. The decision to choose a specific biofuel that is produced from a par - ticular source so largely hinges on its availability and economic feasibility wherever it is used.\",\"PeriodicalId\":15652,\"journal\":{\"name\":\"Journal of Ecological Engineering\",\"volume\":\"24 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ecological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12911/22998993/173564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/173564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Modeling of Waste Vegetable Oil Biodiesel for Tractor Engine Utilization
Biodiesel is regarded as a clean fuel alternative to fossil diesel fuel for fewer pollutant emissions of internal combustion engines. The biodiesel type can be made from waste frying oil, thus it has to be done right. Waste vegetable oil can be provided for free or at a low cost by restaurants and food processors that often use frying oils. Animal fat is also available for free or for a nominal fee from grocery stores, restaurants, and butchers who use lots of fats in their cooking. The methyl ester of oleic acid methyl ester (OAME) biodiesel was produced from used vegetable oil using the transesterification process in order to compare the performance of the 67 kW KUBOTA tractor diesel engine when utilizing OAME and fossil diesel. OAME biofuel was used without being mixed. The engine’s reli - ability metrics and important indicators, including the brake torque, indicated power, brake-specific fuel consump - tion (BSFC) and burn duration, were identified. Optimal implementation was met by fossil diesel and the tested characteristics were very close. The OAME biofuel performs better in terms of volumetric efficiency and duration of combustion than the conventional diesel. The decision to choose a specific biofuel that is produced from a par - ticular source so largely hinges on its availability and economic feasibility wherever it is used.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment