哈达玛德空间中变不等式和均衡问题的强收敛结果

IF 1 Q1 MATHEMATICS
G. C. Ugwunnadi, C. Okeke, A. Khan, L. Jolaoso
{"title":"哈达玛德空间中变不等式和均衡问题的强收敛结果","authors":"G. C. Ugwunnadi, C. Okeke, A. Khan, L. Jolaoso","doi":"10.46793/kgjmat2306.825u","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper is to introduce and study a viscosity type algorithm in a Hadamard space which comprises of a demimetric mapping, a finite family of inverse strongly monotone mappings and an equilibrium problem for a bifunction. Strong convergence of the proposed algorithm to a common solution of variational inequality problem, fixed point problem and equilibrium problem is established in Hadamard spaces. Nontrivial Applications and numerical examples were given. Our results compliment some results in the literature.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":"11 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Convergence Results for Variational Inequality and Equilibrium Problem in Hadamard Spaces\",\"authors\":\"G. C. Ugwunnadi, C. Okeke, A. Khan, L. Jolaoso\",\"doi\":\"10.46793/kgjmat2306.825u\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this paper is to introduce and study a viscosity type algorithm in a Hadamard space which comprises of a demimetric mapping, a finite family of inverse strongly monotone mappings and an equilibrium problem for a bifunction. Strong convergence of the proposed algorithm to a common solution of variational inequality problem, fixed point problem and equilibrium problem is established in Hadamard spaces. Nontrivial Applications and numerical examples were given. Our results compliment some results in the literature.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2306.825u\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2306.825u","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是介绍和研究由半对称映射、有限族逆强单调映射和双函数平衡问题组成的Hadamard空间中的一种粘滞型算法。在Hadamard空间中,该算法对变分不等式问题、不动点问题和平衡问题的通解具有强收敛性。给出了非平凡应用和数值算例。我们的结果与文献中的一些结果相辅相成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Convergence Results for Variational Inequality and Equilibrium Problem in Hadamard Spaces
The main purpose of this paper is to introduce and study a viscosity type algorithm in a Hadamard space which comprises of a demimetric mapping, a finite family of inverse strongly monotone mappings and an equilibrium problem for a bifunction. Strong convergence of the proposed algorithm to a common solution of variational inequality problem, fixed point problem and equilibrium problem is established in Hadamard spaces. Nontrivial Applications and numerical examples were given. Our results compliment some results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信