附着在基底上的动力学如何影响金属卤化物过氧化物中的应力

APL Energy Pub Date : 2023-12-01 DOI:10.1063/5.0177697
Gabriel R. McAndrews, Boyu Guo, Daniel A. Morales, A. Amassian, M. McGehee
{"title":"附着在基底上的动力学如何影响金属卤化物过氧化物中的应力","authors":"Gabriel R. McAndrews, Boyu Guo, Daniel A. Morales, A. Amassian, M. McGehee","doi":"10.1063/5.0177697","DOIUrl":null,"url":null,"abstract":"Metal halide perovskites have the potential to contribute to renewable energy needs as a high efficiency, low-cost alternative for photovoltaics. Initial power conversion efficiencies are superb, but improvements to the operational stability of perovskites are needed to enable extensive deployment. Mechanical stress is an important, but often misunderstood factor impacting chemical degradation and reliability during thermal cycling of perovskites. In this manuscript, we find that a commonly used equation based on the coefficient of thermal expansion (CTE) mismatch between perovskite and substrate fails to accurately predict residual stress following solution-based film formation. For example, despite similar CTEs there is a 60 MPa stress difference between narrow bandgap “SnPb perovskite” Cs0.25FA0.75Sn0.5Pb0.5I3 and “triple cation perovskite” Cs0.05MA0.16FA0.79Pb(I0.83Br0.17)3. A combination of in situ absorbance and substrate curvature measurements are used to demonstrate that partial attachment prior to the anneal can reduce residual stress and explain wide stress variations in perovskites.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":" 68","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How the dynamics of attachment to the substrate influence stress in metal halide perovskites\",\"authors\":\"Gabriel R. McAndrews, Boyu Guo, Daniel A. Morales, A. Amassian, M. McGehee\",\"doi\":\"10.1063/5.0177697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal halide perovskites have the potential to contribute to renewable energy needs as a high efficiency, low-cost alternative for photovoltaics. Initial power conversion efficiencies are superb, but improvements to the operational stability of perovskites are needed to enable extensive deployment. Mechanical stress is an important, but often misunderstood factor impacting chemical degradation and reliability during thermal cycling of perovskites. In this manuscript, we find that a commonly used equation based on the coefficient of thermal expansion (CTE) mismatch between perovskite and substrate fails to accurately predict residual stress following solution-based film formation. For example, despite similar CTEs there is a 60 MPa stress difference between narrow bandgap “SnPb perovskite” Cs0.25FA0.75Sn0.5Pb0.5I3 and “triple cation perovskite” Cs0.05MA0.16FA0.79Pb(I0.83Br0.17)3. A combination of in situ absorbance and substrate curvature measurements are used to demonstrate that partial attachment prior to the anneal can reduce residual stress and explain wide stress variations in perovskites.\",\"PeriodicalId\":178574,\"journal\":{\"name\":\"APL Energy\",\"volume\":\" 68\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0177697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0177697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属卤化物钙钛矿作为一种高效、低成本的光伏替代品,有潜力为可再生能源的需求做出贡献。最初的功率转换效率是极好的,但需要改进钙钛矿的运行稳定性,以实现广泛的部署。机械应力是影响钙钛矿热循环过程中化学降解和可靠性的一个重要但常被误解的因素。在本文中,我们发现基于钙钛矿和衬底之间热膨胀系数(CTE)不匹配的常用方程无法准确预测溶液基薄膜形成后的残余应力。例如,尽管cte相似,但窄带隙“SnPb钙钛矿”Cs0.25FA0.75Sn0.5Pb0.5I3与“三阳离子钙钛矿”Cs0.05MA0.16FA0.79Pb(I0.83Br0.17)3之间的应力差为60 MPa。原位吸光度和衬底曲率测量的组合用于证明在退火之前的部分附着可以减少残余应力,并解释钙钛矿中广泛的应力变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How the dynamics of attachment to the substrate influence stress in metal halide perovskites
Metal halide perovskites have the potential to contribute to renewable energy needs as a high efficiency, low-cost alternative for photovoltaics. Initial power conversion efficiencies are superb, but improvements to the operational stability of perovskites are needed to enable extensive deployment. Mechanical stress is an important, but often misunderstood factor impacting chemical degradation and reliability during thermal cycling of perovskites. In this manuscript, we find that a commonly used equation based on the coefficient of thermal expansion (CTE) mismatch between perovskite and substrate fails to accurately predict residual stress following solution-based film formation. For example, despite similar CTEs there is a 60 MPa stress difference between narrow bandgap “SnPb perovskite” Cs0.25FA0.75Sn0.5Pb0.5I3 and “triple cation perovskite” Cs0.05MA0.16FA0.79Pb(I0.83Br0.17)3. A combination of in situ absorbance and substrate curvature measurements are used to demonstrate that partial attachment prior to the anneal can reduce residual stress and explain wide stress variations in perovskites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信