{"title":"以 g 为基数的纳拉亚纳数作为三个重数的乘积","authors":"P. Tiebekabe, K. R. Kakanou, Hamid Ben Yakkou","doi":"10.12697/acutm.2023.27.21","DOIUrl":null,"url":null,"abstract":"In this paper, we show that there are only finitely many Narayana's numbers which can be written as a product of three repdigits in base g with g >= 2. Moreover, for 2 <= g <= 10, we determine all these numbers.\n \n ","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":" 14","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Narayana numbers as products of three repdigits in base g\",\"authors\":\"P. Tiebekabe, K. R. Kakanou, Hamid Ben Yakkou\",\"doi\":\"10.12697/acutm.2023.27.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that there are only finitely many Narayana's numbers which can be written as a product of three repdigits in base g with g >= 2. Moreover, for 2 <= g <= 10, we determine all these numbers.\\n \\n \",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\" 14\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2023.27.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2023.27.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们证明了只有有限多个Narayana数可以写成以g为底且g >= 2的三个数字的乘积。此外,对于2 <= g <= 10,我们确定了所有这些数。
Narayana numbers as products of three repdigits in base g
In this paper, we show that there are only finitely many Narayana's numbers which can be written as a product of three repdigits in base g with g >= 2. Moreover, for 2 <= g <= 10, we determine all these numbers.