{"title":"在葡萄园中使用芸苔属覆盖作物作为活覆盖物,一个生长季的变化","authors":"Corynne O’Farrell, Tom Forge, Miranda M. Hart","doi":"10.3390/ijpb14040081","DOIUrl":null,"url":null,"abstract":"Farmers hoping to manage cropping systems sustainably are turning to cover crops to help mitigate plant pathogens. Plants with biofumigant properties are used to control soil-borne pathogens in agricultural settings, especially in till systems, where the brassicas are incorporated into the soil as green manure or seed meal. The effect of these crops is not well studied in no-till systems; thus, it is hard to know if they are as effective as green manure. Whether or not these cover crops can effect changes during a single growth season has not yet been studied. This study compared the response of the soil microbial community to four different brassica cover crops, two of which are commonly used in vineyards (Sinapis alba L. (white mustard) and Raphanus sativus (L.) Domin (tillage radish)) as well as two brassicas that are native or naturalized to the Okanagan (Capsella bursa-pastoris (L.) Medik. (Shepherd’s purse) and Boechera holboelli (Hornem.) Á. Löve and D. Löve (Holbøll’s rockcress)). Cover crops did not affect fungal species richness, but B. holboelli recover crops were associated with increased evenness among fungal taxa. Both C. bursa-pastoris and S. alba had lower levels of plant parasitic nematodes compared to non-brassica controls. These results were apparent only after a single growing season, which indicates growers could use this approach as needed, minimizing long-term exposure to biofumigants for beneficial soil microbes.","PeriodicalId":38827,"journal":{"name":"International Journal of Plant Biology","volume":" 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Brassica Cover Crops as Living Mulch in a Vineyard, Changes over One Growing Season\",\"authors\":\"Corynne O’Farrell, Tom Forge, Miranda M. Hart\",\"doi\":\"10.3390/ijpb14040081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Farmers hoping to manage cropping systems sustainably are turning to cover crops to help mitigate plant pathogens. Plants with biofumigant properties are used to control soil-borne pathogens in agricultural settings, especially in till systems, where the brassicas are incorporated into the soil as green manure or seed meal. The effect of these crops is not well studied in no-till systems; thus, it is hard to know if they are as effective as green manure. Whether or not these cover crops can effect changes during a single growth season has not yet been studied. This study compared the response of the soil microbial community to four different brassica cover crops, two of which are commonly used in vineyards (Sinapis alba L. (white mustard) and Raphanus sativus (L.) Domin (tillage radish)) as well as two brassicas that are native or naturalized to the Okanagan (Capsella bursa-pastoris (L.) Medik. (Shepherd’s purse) and Boechera holboelli (Hornem.) Á. Löve and D. Löve (Holbøll’s rockcress)). Cover crops did not affect fungal species richness, but B. holboelli recover crops were associated with increased evenness among fungal taxa. Both C. bursa-pastoris and S. alba had lower levels of plant parasitic nematodes compared to non-brassica controls. These results were apparent only after a single growing season, which indicates growers could use this approach as needed, minimizing long-term exposure to biofumigants for beneficial soil microbes.\",\"PeriodicalId\":38827,\"journal\":{\"name\":\"International Journal of Plant Biology\",\"volume\":\" 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ijpb14040081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijpb14040081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Using Brassica Cover Crops as Living Mulch in a Vineyard, Changes over One Growing Season
Farmers hoping to manage cropping systems sustainably are turning to cover crops to help mitigate plant pathogens. Plants with biofumigant properties are used to control soil-borne pathogens in agricultural settings, especially in till systems, where the brassicas are incorporated into the soil as green manure or seed meal. The effect of these crops is not well studied in no-till systems; thus, it is hard to know if they are as effective as green manure. Whether or not these cover crops can effect changes during a single growth season has not yet been studied. This study compared the response of the soil microbial community to four different brassica cover crops, two of which are commonly used in vineyards (Sinapis alba L. (white mustard) and Raphanus sativus (L.) Domin (tillage radish)) as well as two brassicas that are native or naturalized to the Okanagan (Capsella bursa-pastoris (L.) Medik. (Shepherd’s purse) and Boechera holboelli (Hornem.) Á. Löve and D. Löve (Holbøll’s rockcress)). Cover crops did not affect fungal species richness, but B. holboelli recover crops were associated with increased evenness among fungal taxa. Both C. bursa-pastoris and S. alba had lower levels of plant parasitic nematodes compared to non-brassica controls. These results were apparent only after a single growing season, which indicates growers could use this approach as needed, minimizing long-term exposure to biofumigants for beneficial soil microbes.
期刊介绍:
The International Journal of Plant Biology is an Open Access, online-only, peer-reviewed journal that considers scientific papers in all different subdisciplines of plant biology, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, mycology and phytopathology.