量化区域多重因素对净初级植被生产力和净生态系统生产力时空变化机制的影响:以中国江淮流域为例

Huimin Chen, Benlin Wang, Liangfeng Zheng, ZhengAmirReza Shahtahmassebi
{"title":"量化区域多重因素对净初级植被生产力和净生态系统生产力时空变化机制的影响:以中国江淮流域为例","authors":"Huimin Chen, Benlin Wang, Liangfeng Zheng, ZhengAmirReza Shahtahmassebi","doi":"10.14358/pers.23-00017r2","DOIUrl":null,"url":null,"abstract":"Despite much valuable research on the mechanisms for spatio-temporal changesof net primary vegetation productivity (NPP) and net ecosystem productivity (NEP), there is a paucity of information on assessing impacts of regional multiple factors on spatiotemporal researchs of NPP and NEP\n in the complex environment. This study attempts to bridge this information gap using the Jianghuai Basin in China as a case study. Using a field campaign, remotely sensed imagery, socioeconomic data, and meteorological parameters, we developed a framework based on the Carnegie‐Ames‐Stanford\n Approach (CASA) model, correlation technique, trend analysis, and landscape metrics to measure spatiotemporal changes in NPP and NEP from 2001 to 2018. The derived changes were then linked to regional multiple factors including climate, landscape factors, human activity, and land use change.\n The results of the research can provide a scientific basis for vegetation evaluation, ecosystem assessment, and other aspects of the region.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Impacts of Regional Multiple Factors on Spatiotemporal the Mechanisms for Spatio-temporal changes of Net Primary Vegetation Productivity and Net Ecosystem Productivity: An Example in the Jianghuai River Basin, China\",\"authors\":\"Huimin Chen, Benlin Wang, Liangfeng Zheng, ZhengAmirReza Shahtahmassebi\",\"doi\":\"10.14358/pers.23-00017r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite much valuable research on the mechanisms for spatio-temporal changesof net primary vegetation productivity (NPP) and net ecosystem productivity (NEP), there is a paucity of information on assessing impacts of regional multiple factors on spatiotemporal researchs of NPP and NEP\\n in the complex environment. This study attempts to bridge this information gap using the Jianghuai Basin in China as a case study. Using a field campaign, remotely sensed imagery, socioeconomic data, and meteorological parameters, we developed a framework based on the Carnegie‐Ames‐Stanford\\n Approach (CASA) model, correlation technique, trend analysis, and landscape metrics to measure spatiotemporal changes in NPP and NEP from 2001 to 2018. The derived changes were then linked to regional multiple factors including climate, landscape factors, human activity, and land use change.\\n The results of the research can provide a scientific basis for vegetation evaluation, ecosystem assessment, and other aspects of the region.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\" 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.23-00017r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00017r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管对净初级植被生产力(NPP)和净生态系统生产力(NEP)的时空变化机制进行了大量有价值的研究,但在复杂环境下,区域多因子对NPP和NEP时空研究的影响研究却很少。本研究以中国江淮盆地为例,试图弥补这一信息缺口。利用野外活动、遥感图像、社会经济数据和气象参数,我们开发了一个基于卡内基-艾姆斯-斯坦福方法(CASA)模型、相关技术、趋势分析和景观指标的框架,以测量2001 - 2018年NPP和NEP的时空变化。然后将这些变化与包括气候、景观因素、人类活动和土地利用变化在内的区域多重因素联系起来。研究结果可为该地区植被评价、生态系统评价等方面提供科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying Impacts of Regional Multiple Factors on Spatiotemporal the Mechanisms for Spatio-temporal changes of Net Primary Vegetation Productivity and Net Ecosystem Productivity: An Example in the Jianghuai River Basin, China
Despite much valuable research on the mechanisms for spatio-temporal changesof net primary vegetation productivity (NPP) and net ecosystem productivity (NEP), there is a paucity of information on assessing impacts of regional multiple factors on spatiotemporal researchs of NPP and NEP in the complex environment. This study attempts to bridge this information gap using the Jianghuai Basin in China as a case study. Using a field campaign, remotely sensed imagery, socioeconomic data, and meteorological parameters, we developed a framework based on the Carnegie‐Ames‐Stanford Approach (CASA) model, correlation technique, trend analysis, and landscape metrics to measure spatiotemporal changes in NPP and NEP from 2001 to 2018. The derived changes were then linked to regional multiple factors including climate, landscape factors, human activity, and land use change. The results of the research can provide a scientific basis for vegetation evaluation, ecosystem assessment, and other aspects of the region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信