将分数微积分应用于库诺型调整模型

A. De Cezaro, Matheus Madeira Correa
{"title":"将分数微积分应用于库诺型调整模型","authors":"A. De Cezaro, Matheus Madeira Correa","doi":"10.5902/2179460x73724","DOIUrl":null,"url":null,"abstract":"In this contribution, we propose the incorporation of memory in a Cournot-type model for the process of adjusting the production of firms in a duopoly market, through the calculation of fractional order. Under the simplifying assumption that the inverse demand and costs of firms are affine functions of the quantities produced, we show numerically some conditions on memory (fractional derivative order) and on the speed of the adjustment process, so that the model proposed converges to Cournot's generalized stationary points. Under these assumptions, we show that the firm that has more memory obtains greater profit.","PeriodicalId":348075,"journal":{"name":"Ciência e Natura","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional calculus applied to the Cournot-type adjustment model\",\"authors\":\"A. De Cezaro, Matheus Madeira Correa\",\"doi\":\"10.5902/2179460x73724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, we propose the incorporation of memory in a Cournot-type model for the process of adjusting the production of firms in a duopoly market, through the calculation of fractional order. Under the simplifying assumption that the inverse demand and costs of firms are affine functions of the quantities produced, we show numerically some conditions on memory (fractional derivative order) and on the speed of the adjustment process, so that the model proposed converges to Cournot's generalized stationary points. Under these assumptions, we show that the firm that has more memory obtains greater profit.\",\"PeriodicalId\":348075,\"journal\":{\"name\":\"Ciência e Natura\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ciência e Natura\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5902/2179460x73724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciência e Natura","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5902/2179460x73724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们提出通过计算分数阶,将记忆纳入双寡头市场中企业生产调整过程的古诺模型中。在简化假设企业的逆向需求和成本是产量的仿射函数的前提下,我们用数值方法证明了一些关于内存(分数阶导数)和调整过程速度的条件,从而使所提出的模型收敛于古诺广义平稳点。在这些假设下,我们证明拥有更多内存的企业获得更大的利润。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional calculus applied to the Cournot-type adjustment model
In this contribution, we propose the incorporation of memory in a Cournot-type model for the process of adjusting the production of firms in a duopoly market, through the calculation of fractional order. Under the simplifying assumption that the inverse demand and costs of firms are affine functions of the quantities produced, we show numerically some conditions on memory (fractional derivative order) and on the speed of the adjustment process, so that the model proposed converges to Cournot's generalized stationary points. Under these assumptions, we show that the firm that has more memory obtains greater profit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信