{"title":"包含平面内双弯管的管道扇形结构中流变二次流的计算分析","authors":"A. Banerjee, S. Sengupta, S. Pramanik","doi":"10.47176/jafm.16.12.1966","DOIUrl":null,"url":null,"abstract":"Non-Newtonian fluid flow in pipe bends is inevitable in industrial applications. Previous researchers have extensively explored Newtonian flow through curved ducts. However, the non-Newtonian counterpart gets little attention. We study the turbulent flow of shear-dependent fluids obeying the Power-Law model in a pipe manifold containing an in-plane double bend. Ostwald–de Waele's power law is used to model the fluid's rheology. We utilize computational fluid dynamics (CFD) to solve Reynolds-averaged Navier–Stokes (RANS) equations with the k-ε turbulence model. We validate our numerical results with previous experimental results. The in-plane double bend perturbs the flow in the pipe manifold to develop a Prandtl's secondary flow of the first kind. A fully developed flow at the bend upstream is disturbed due to the bend's curvature and regains its fully developed characteristics upon a certain downstream length after the exit of the bend. We study the rheological characteristics of the secondary flow within the bend and the evolution of fluid flow at the bend downstream. We demonstrate that the centrifugal force-dominated secondary flow increases with a decrease of the non-Newtonian power-law index. We capture the camel's-back-shaped velocity profiles within the bend due to accelerating-decelerating flow. The study reveals that the average flow velocity increases along the bend with a corresponding pressure head loss. We quantify this velocity rise by a newly introduced non-dimensional number, viz. enhancement ratio. The double bend's enhancement ratio decreases with an increase in n.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" 42","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Analysis of Rheological Secondary Flow in a Pipe-Manifold Containing In-Plane Double Bends\",\"authors\":\"A. Banerjee, S. Sengupta, S. Pramanik\",\"doi\":\"10.47176/jafm.16.12.1966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Newtonian fluid flow in pipe bends is inevitable in industrial applications. Previous researchers have extensively explored Newtonian flow through curved ducts. However, the non-Newtonian counterpart gets little attention. We study the turbulent flow of shear-dependent fluids obeying the Power-Law model in a pipe manifold containing an in-plane double bend. Ostwald–de Waele's power law is used to model the fluid's rheology. We utilize computational fluid dynamics (CFD) to solve Reynolds-averaged Navier–Stokes (RANS) equations with the k-ε turbulence model. We validate our numerical results with previous experimental results. The in-plane double bend perturbs the flow in the pipe manifold to develop a Prandtl's secondary flow of the first kind. A fully developed flow at the bend upstream is disturbed due to the bend's curvature and regains its fully developed characteristics upon a certain downstream length after the exit of the bend. We study the rheological characteristics of the secondary flow within the bend and the evolution of fluid flow at the bend downstream. We demonstrate that the centrifugal force-dominated secondary flow increases with a decrease of the non-Newtonian power-law index. We capture the camel's-back-shaped velocity profiles within the bend due to accelerating-decelerating flow. The study reveals that the average flow velocity increases along the bend with a corresponding pressure head loss. We quantify this velocity rise by a newly introduced non-dimensional number, viz. enhancement ratio. The double bend's enhancement ratio decreases with an increase in n.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":\" 42\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.16.12.1966\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.12.1966","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Computational Analysis of Rheological Secondary Flow in a Pipe-Manifold Containing In-Plane Double Bends
Non-Newtonian fluid flow in pipe bends is inevitable in industrial applications. Previous researchers have extensively explored Newtonian flow through curved ducts. However, the non-Newtonian counterpart gets little attention. We study the turbulent flow of shear-dependent fluids obeying the Power-Law model in a pipe manifold containing an in-plane double bend. Ostwald–de Waele's power law is used to model the fluid's rheology. We utilize computational fluid dynamics (CFD) to solve Reynolds-averaged Navier–Stokes (RANS) equations with the k-ε turbulence model. We validate our numerical results with previous experimental results. The in-plane double bend perturbs the flow in the pipe manifold to develop a Prandtl's secondary flow of the first kind. A fully developed flow at the bend upstream is disturbed due to the bend's curvature and regains its fully developed characteristics upon a certain downstream length after the exit of the bend. We study the rheological characteristics of the secondary flow within the bend and the evolution of fluid flow at the bend downstream. We demonstrate that the centrifugal force-dominated secondary flow increases with a decrease of the non-Newtonian power-law index. We capture the camel's-back-shaped velocity profiles within the bend due to accelerating-decelerating flow. The study reveals that the average flow velocity increases along the bend with a corresponding pressure head loss. We quantify this velocity rise by a newly introduced non-dimensional number, viz. enhancement ratio. The double bend's enhancement ratio decreases with an increase in n.
期刊介绍:
The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .