深度学习无监督传输方法支持的篮球步法与应用

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yu Feng, Hui Sun
{"title":"深度学习无监督传输方法支持的篮球步法与应用","authors":"Yu Feng, Hui Sun","doi":"10.4018/ijitwe.334365","DOIUrl":null,"url":null,"abstract":"The combination of traditional basketball footwork mobile teaching and AI will become a hot spot in basketball footwork research. This article used a deep learning (DL) unsupervised transfer method: Convolutional neural networks are used to extract source and target domain samples for transfer learning. Feature extraction is performed on the data, and the impending action of a basketball player is predicted. Meanwhile, the unsupervised human action transfer method is studied to provide new ideas for basketball footwork action series data modeling. Finally, the theoretical framework of DL unsupervised transfer learning is reviewed. Its principle is explored and applied in the teaching of basketball footwork. The results show that convolutional neural networks can predict players' movement trajectories, unsupervised training using network data dramatically increases the variety of actions during training. The classification accuracy of the transfer learning method is high, and it can be used for the different basketball footwork in the corresponding stage of the court.","PeriodicalId":51925,"journal":{"name":"International Journal of Information Technology and Web Engineering","volume":" 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basketball Footwork and Application Supported by Deep Learning Unsupervised Transfer Method\",\"authors\":\"Yu Feng, Hui Sun\",\"doi\":\"10.4018/ijitwe.334365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of traditional basketball footwork mobile teaching and AI will become a hot spot in basketball footwork research. This article used a deep learning (DL) unsupervised transfer method: Convolutional neural networks are used to extract source and target domain samples for transfer learning. Feature extraction is performed on the data, and the impending action of a basketball player is predicted. Meanwhile, the unsupervised human action transfer method is studied to provide new ideas for basketball footwork action series data modeling. Finally, the theoretical framework of DL unsupervised transfer learning is reviewed. Its principle is explored and applied in the teaching of basketball footwork. The results show that convolutional neural networks can predict players' movement trajectories, unsupervised training using network data dramatically increases the variety of actions during training. The classification accuracy of the transfer learning method is high, and it can be used for the different basketball footwork in the corresponding stage of the court.\",\"PeriodicalId\":51925,\"journal\":{\"name\":\"International Journal of Information Technology and Web Engineering\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Web Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitwe.334365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Web Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitwe.334365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

传统篮球步法移动教学与人工智能的结合将成为篮球步法研究的热点。本文采用深度学习(DL)无监督迁移方法:利用卷积神经网络提取源域和目标域样本进行迁移学习。对数据进行特征提取,预测篮球运动员即将发生的动作。同时,研究了无监督人体动作传递方法,为篮球步法动作系列数据建模提供了新的思路。最后,回顾了深度学习无监督迁移学习的理论框架。探讨其原理,并将其应用于篮球步法教学中。结果表明,卷积神经网络可以预测球员的运动轨迹,使用网络数据的无监督训练显著增加了训练过程中动作的多样性。迁移学习方法分类准确率高,可用于球场相应阶段的不同篮球步法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Basketball Footwork and Application Supported by Deep Learning Unsupervised Transfer Method
The combination of traditional basketball footwork mobile teaching and AI will become a hot spot in basketball footwork research. This article used a deep learning (DL) unsupervised transfer method: Convolutional neural networks are used to extract source and target domain samples for transfer learning. Feature extraction is performed on the data, and the impending action of a basketball player is predicted. Meanwhile, the unsupervised human action transfer method is studied to provide new ideas for basketball footwork action series data modeling. Finally, the theoretical framework of DL unsupervised transfer learning is reviewed. Its principle is explored and applied in the teaching of basketball footwork. The results show that convolutional neural networks can predict players' movement trajectories, unsupervised training using network data dramatically increases the variety of actions during training. The classification accuracy of the transfer learning method is high, and it can be used for the different basketball footwork in the corresponding stage of the court.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
24
期刊介绍: Organizations are continuously overwhelmed by a variety of new information technologies, many are Web based. These new technologies are capitalizing on the widespread use of network and communication technologies for seamless integration of various issues in information and knowledge sharing within and among organizations. This emphasis on integrated approaches is unique to this journal and dictates cross platform and multidisciplinary strategy to research and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信