Fahad Abdulaziz, K. Alabbosh, Odeh Abdullah Odeh Alshammari, Wasan Mohammed Bin Tuwalah, Tahani Y. A. Alanazi, Aleksandra Rakić, Miljan Barić, Milica Marković, V. Jevtović, D. Dimić
{"title":"具有生物活性的 Co(III)-Pyridoxal-Isothiosemicarbazone 复合物的晶体结构和量子化学分析","authors":"Fahad Abdulaziz, K. Alabbosh, Odeh Abdullah Odeh Alshammari, Wasan Mohammed Bin Tuwalah, Tahani Y. A. Alanazi, Aleksandra Rakić, Miljan Barić, Milica Marković, V. Jevtović, D. Dimić","doi":"10.3390/inorganics11120466","DOIUrl":null,"url":null,"abstract":"Semicarbazones and their transition metal complexes have been investigated as biologically active compounds. This study explores the synthesis, X-ray crystallographic structure, and characterization of a novel Co(III) complex cation with a pyridoxal-isothiosemicarbazone (PLITSC) ligand, [Co(PLITSC-2H)(NH3)3]+. The structure of the complex was further elucidated by the elemental analysis and spectroscopic techniques (IR and UV–VIS). Hirshfeld surface analysis was applied for the investigation of intermolecular interactions governing crystal structure. Optimization was performed at the B3LYP/6-31 + G(d,p)(H,C,N,O,S)/LanL2DZ(Co) level of theory without any geometrical constraints. The selected level of theory’s applicability was proven after comparing experimental and theoretical bond lengths and angles. The antibacterial activity of the complex towards E. coli and B. subtilis was determined and qualified as moderate compared to Streptomycin. The formation of free radical species in the presence of the complex was further verified in the fluorescence microscopy measurements. The molecular docking towards neural nitric-oxide synthase in the brain has shown that the complex structure and relative distribution of ligands were responsible for the binding to amino acids in the active pocket.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" 18","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallographic Structure and Quantum-Chemical Analysis of Biologically Active Co(III)-Pyridoxal–Isothiosemicarbazone Complex\",\"authors\":\"Fahad Abdulaziz, K. Alabbosh, Odeh Abdullah Odeh Alshammari, Wasan Mohammed Bin Tuwalah, Tahani Y. A. Alanazi, Aleksandra Rakić, Miljan Barić, Milica Marković, V. Jevtović, D. Dimić\",\"doi\":\"10.3390/inorganics11120466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semicarbazones and their transition metal complexes have been investigated as biologically active compounds. This study explores the synthesis, X-ray crystallographic structure, and characterization of a novel Co(III) complex cation with a pyridoxal-isothiosemicarbazone (PLITSC) ligand, [Co(PLITSC-2H)(NH3)3]+. The structure of the complex was further elucidated by the elemental analysis and spectroscopic techniques (IR and UV–VIS). Hirshfeld surface analysis was applied for the investigation of intermolecular interactions governing crystal structure. Optimization was performed at the B3LYP/6-31 + G(d,p)(H,C,N,O,S)/LanL2DZ(Co) level of theory without any geometrical constraints. The selected level of theory’s applicability was proven after comparing experimental and theoretical bond lengths and angles. The antibacterial activity of the complex towards E. coli and B. subtilis was determined and qualified as moderate compared to Streptomycin. The formation of free radical species in the presence of the complex was further verified in the fluorescence microscopy measurements. The molecular docking towards neural nitric-oxide synthase in the brain has shown that the complex structure and relative distribution of ligands were responsible for the binding to amino acids in the active pocket.\",\"PeriodicalId\":13572,\"journal\":{\"name\":\"Inorganics\",\"volume\":\" 18\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics11120466\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics11120466","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Crystallographic Structure and Quantum-Chemical Analysis of Biologically Active Co(III)-Pyridoxal–Isothiosemicarbazone Complex
Semicarbazones and their transition metal complexes have been investigated as biologically active compounds. This study explores the synthesis, X-ray crystallographic structure, and characterization of a novel Co(III) complex cation with a pyridoxal-isothiosemicarbazone (PLITSC) ligand, [Co(PLITSC-2H)(NH3)3]+. The structure of the complex was further elucidated by the elemental analysis and spectroscopic techniques (IR and UV–VIS). Hirshfeld surface analysis was applied for the investigation of intermolecular interactions governing crystal structure. Optimization was performed at the B3LYP/6-31 + G(d,p)(H,C,N,O,S)/LanL2DZ(Co) level of theory without any geometrical constraints. The selected level of theory’s applicability was proven after comparing experimental and theoretical bond lengths and angles. The antibacterial activity of the complex towards E. coli and B. subtilis was determined and qualified as moderate compared to Streptomycin. The formation of free radical species in the presence of the complex was further verified in the fluorescence microscopy measurements. The molecular docking towards neural nitric-oxide synthase in the brain has shown that the complex structure and relative distribution of ligands were responsible for the binding to amino acids in the active pocket.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD