{"title":"有限级M/G/1型马尔可夫链的亚几何收敛公式:通过偏差矩阵泊松方程的块分解友好解决方案","authors":"Hiroyuki Masuyama, Y. Katsumata, Tatsuaki Kimura","doi":"10.1017/apr.2023.39","DOIUrl":null,"url":null,"abstract":"\n The purpose of this study is to present a subgeometric convergence formula for the stationary distribution of the finite-level M/G/1-type Markov chain when taking its infinite-level limit, where the upper boundary level goes to infinity. This study is carried out using the fundamental deviation matrix, which is a block-decomposition-friendly solution to the Poisson equation of the deviation matrix. The fundamental deviation matrix provides a difference formula for the respective stationary distributions of the finite-level chain and the corresponding infinite-level chain. The difference formula plays a crucial role in the derivation of the main result of this paper, and the main result is used, for example, to derive an asymptotic formula for the loss probability in the MAP/GI/1/N queue.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A subgeometric convergence formula for finite-level M/G/1-type Markov chains: via a block-decomposition-friendly solution to the Poisson equation of the deviation matrix\",\"authors\":\"Hiroyuki Masuyama, Y. Katsumata, Tatsuaki Kimura\",\"doi\":\"10.1017/apr.2023.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The purpose of this study is to present a subgeometric convergence formula for the stationary distribution of the finite-level M/G/1-type Markov chain when taking its infinite-level limit, where the upper boundary level goes to infinity. This study is carried out using the fundamental deviation matrix, which is a block-decomposition-friendly solution to the Poisson equation of the deviation matrix. The fundamental deviation matrix provides a difference formula for the respective stationary distributions of the finite-level chain and the corresponding infinite-level chain. The difference formula plays a crucial role in the derivation of the main result of this paper, and the main result is used, for example, to derive an asymptotic formula for the loss probability in the MAP/GI/1/N queue.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2023.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2023.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A subgeometric convergence formula for finite-level M/G/1-type Markov chains: via a block-decomposition-friendly solution to the Poisson equation of the deviation matrix
The purpose of this study is to present a subgeometric convergence formula for the stationary distribution of the finite-level M/G/1-type Markov chain when taking its infinite-level limit, where the upper boundary level goes to infinity. This study is carried out using the fundamental deviation matrix, which is a block-decomposition-friendly solution to the Poisson equation of the deviation matrix. The fundamental deviation matrix provides a difference formula for the respective stationary distributions of the finite-level chain and the corresponding infinite-level chain. The difference formula plays a crucial role in the derivation of the main result of this paper, and the main result is used, for example, to derive an asymptotic formula for the loss probability in the MAP/GI/1/N queue.