为邻接矩阵、拉普拉斯矩阵和归一化拉普拉斯矩阵构建同步共谱图

IF 1 Q1 MATHEMATICS
Arpita Das, P. Panigrahi
{"title":"为邻接矩阵、拉普拉斯矩阵和归一化拉普拉斯矩阵构建同步共谱图","authors":"Arpita Das, P. Panigrahi","doi":"10.46793/kgjmat2306.947d","DOIUrl":null,"url":null,"abstract":"In this paper we construct several classes of non-regular graphs which are co-spectral with respect to all the three matrices, namely, adjacency, Laplacian and normalized Laplacian, and hence we answer a question asked by Butler [?]. We make these constructions starting with two pairs (G1, H1) and (G2, H2) of A-cospectral regular graphs, then considering the subdivision graphs S(Gi) and R-graphs ℛ(Hi), i = 1, 2, and finally making some kind of partial joins between S(G1) and ℛ(G2) and S(H1) and ℛ(H2). Moreover, we determine the number of spanning trees and the Kirchhoff index of the newly constructed graphs.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" 34","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Simultaneous Cospectral Graphs for Adjacency, Laplacian and Normalized Laplacian Matrices\",\"authors\":\"Arpita Das, P. Panigrahi\",\"doi\":\"10.46793/kgjmat2306.947d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we construct several classes of non-regular graphs which are co-spectral with respect to all the three matrices, namely, adjacency, Laplacian and normalized Laplacian, and hence we answer a question asked by Butler [?]. We make these constructions starting with two pairs (G1, H1) and (G2, H2) of A-cospectral regular graphs, then considering the subdivision graphs S(Gi) and R-graphs ℛ(Hi), i = 1, 2, and finally making some kind of partial joins between S(G1) and ℛ(G2) and S(H1) and ℛ(H2). Moreover, we determine the number of spanning trees and the Kirchhoff index of the newly constructed graphs.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\" 34\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2306.947d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2306.947d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们构造了几类非正则图,它们对所有三个矩阵都是共谱的,即邻接矩阵、拉普拉斯矩阵和归一化拉普拉斯矩阵,从而回答了Butler[?]提出的一个问题。我们从a -共谱正则图的两对(G1, H1)和(G2, H2)开始构造这些图,然后考虑图S(Gi)和图r (Hi), i = 1,2的细分,最后在S(G1)与g (G2)和S(H1)与g (H2)之间建立某种部分连接。此外,我们还确定了生成树的个数和新构造图的Kirchhoff指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Simultaneous Cospectral Graphs for Adjacency, Laplacian and Normalized Laplacian Matrices
In this paper we construct several classes of non-regular graphs which are co-spectral with respect to all the three matrices, namely, adjacency, Laplacian and normalized Laplacian, and hence we answer a question asked by Butler [?]. We make these constructions starting with two pairs (G1, H1) and (G2, H2) of A-cospectral regular graphs, then considering the subdivision graphs S(Gi) and R-graphs ℛ(Hi), i = 1, 2, and finally making some kind of partial joins between S(G1) and ℛ(G2) and S(H1) and ℛ(H2). Moreover, we determine the number of spanning trees and the Kirchhoff index of the newly constructed graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信