使用截断伽马分布进行过程监控

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2023-12-01 DOI:10.3390/stats6040080
Sajid Ali, Shayaan Rajput, Ismail Shah, Hassan Houmani
{"title":"使用截断伽马分布进行过程监控","authors":"Sajid Ali, Shayaan Rajput, Ismail Shah, Hassan Houmani","doi":"10.3390/stats6040080","DOIUrl":null,"url":null,"abstract":"The time-between-events idea is commonly used for monitoring high-quality processes. This study aims to monitor the increase and/or decrease in the process mean rapidly using a one-sided exponentially weighted moving average (EWMA) chart for the detection of upward or downward mean shifts using a truncated gamma distribution. The use of the truncation method helps to enhance and improve the sensitivity of the proposed chart. The performance of the proposed chart with known and estimated parameters is analyzed by using the run length properties, including the average run length (ARL) and standard deviation run length (SDRL), through extensive Monte Carlo simulation. The numerical results show that the proposed scheme is more sensitive than the existing ones. Finally, the chart is implemented in real-world situations to highlight the significance of the proposed chart.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" 5","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process Monitoring Using Truncated Gamma Distribution\",\"authors\":\"Sajid Ali, Shayaan Rajput, Ismail Shah, Hassan Houmani\",\"doi\":\"10.3390/stats6040080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The time-between-events idea is commonly used for monitoring high-quality processes. This study aims to monitor the increase and/or decrease in the process mean rapidly using a one-sided exponentially weighted moving average (EWMA) chart for the detection of upward or downward mean shifts using a truncated gamma distribution. The use of the truncation method helps to enhance and improve the sensitivity of the proposed chart. The performance of the proposed chart with known and estimated parameters is analyzed by using the run length properties, including the average run length (ARL) and standard deviation run length (SDRL), through extensive Monte Carlo simulation. The numerical results show that the proposed scheme is more sensitive than the existing ones. Finally, the chart is implemented in real-world situations to highlight the significance of the proposed chart.\",\"PeriodicalId\":93142,\"journal\":{\"name\":\"Stats\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stats\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats6040080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6040080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

事件之间的时间概念通常用于监视高质量的流程。本研究旨在使用单侧指数加权移动平均(EWMA)图快速监测过程均值的增加和/或减少,以便使用截断的伽玛分布检测向上或向下的均值移位。截断法的使用有助于增强和改善所提出的图表的灵敏度。通过广泛的蒙特卡罗模拟,利用包括平均运行长度(ARL)和标准偏差运行长度(SDRL)在内的运行长度属性,分析了已知参数和估计参数下所提出的图表的性能。数值结果表明,所提方案比现有方案具有更高的灵敏度。最后,该图表在现实世界的情况下实现,以突出所建议的图表的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Process Monitoring Using Truncated Gamma Distribution
The time-between-events idea is commonly used for monitoring high-quality processes. This study aims to monitor the increase and/or decrease in the process mean rapidly using a one-sided exponentially weighted moving average (EWMA) chart for the detection of upward or downward mean shifts using a truncated gamma distribution. The use of the truncation method helps to enhance and improve the sensitivity of the proposed chart. The performance of the proposed chart with known and estimated parameters is analyzed by using the run length properties, including the average run length (ARL) and standard deviation run length (SDRL), through extensive Monte Carlo simulation. The numerical results show that the proposed scheme is more sensitive than the existing ones. Finally, the chart is implemented in real-world situations to highlight the significance of the proposed chart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信