汤普森群𝐹的生成问题

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gili Golan Polak
{"title":"汤普森群𝐹的生成问题","authors":"Gili Golan Polak","doi":"10.1090/memo/1451","DOIUrl":null,"url":null,"abstract":"<p>We show that the generation problem in Thompson’s group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is decidable, i.e., there is an algorithm which decides if a finite set of elements of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> generates the whole <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The algorithm makes use of the Stallings <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-core of subgroups of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, which can be defined in an analogous way to the Stallings core of subgroups of a finitely generated free group. Further study of the Stallings <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-core of subgroups of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> provides a solution to another algorithmic problem in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Namely, given a finitely generated subgroup <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, it is decidable if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> acts transitively on the set of finite dyadic fractions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Other applications of the study include the construction of new maximal subgroups of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of infinite index, among which, a maximal subgroup of infinite index which acts transitively on the set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper D\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">D</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the construction of an elementary amenable subgroup of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which is maximal in a normal subgroup of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Generation Problem in Thompson Group 𝐹\",\"authors\":\"Gili Golan Polak\",\"doi\":\"10.1090/memo/1451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the generation problem in Thompson’s group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is decidable, i.e., there is an algorithm which decides if a finite set of elements of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> generates the whole <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The algorithm makes use of the Stallings <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-core of subgroups of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, which can be defined in an analogous way to the Stallings core of subgroups of a finitely generated free group. Further study of the Stallings <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-core of subgroups of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> provides a solution to another algorithmic problem in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Namely, given a finitely generated subgroup <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, it is decidable if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> acts transitively on the set of finite dyadic fractions <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper D\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal D</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Other applications of the study include the construction of new maximal subgroups of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of infinite index, among which, a maximal subgroup of infinite index which acts transitively on the set <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper D\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">D</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal D</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and the construction of an elementary amenable subgroup of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> which is maximal in a normal subgroup of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\">\\n <mml:semantics>\\n <mml:mi>F</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了Thompson群F F中的生成问题是可判定的,即存在一种算法来判定F F的有限元素集是否生成整个F F。该算法利用了F - F的子群的Stallings 22核,它可以用类似于有限生成自由群的子群的Stallings核的方式来定义。对F - F子群的Stallings - 22核的进一步研究,为F - F中的另一个算法问题提供了解决方案。即,给定F F的有限生成子群H H,当H H传递作用于有限并进分数集D \数学D时,H H是可判定的。本研究的其他应用还包括构造无穷指标F的新的极大子群,其中一个传递作用于集合D \数学D的无穷指标F的极大子群,以及F F的一个初等可服从子群的构造,该子群在F F的一个正则子群中是极大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Generation Problem in Thompson Group 𝐹

We show that the generation problem in Thompson’s group F F is decidable, i.e., there is an algorithm which decides if a finite set of elements of F F generates the whole F F . The algorithm makes use of the Stallings 2 2 -core of subgroups of F F , which can be defined in an analogous way to the Stallings core of subgroups of a finitely generated free group. Further study of the Stallings 2 2 -core of subgroups of F F provides a solution to another algorithmic problem in F F . Namely, given a finitely generated subgroup H H of F F , it is decidable if H H acts transitively on the set of finite dyadic fractions D \mathcal D . Other applications of the study include the construction of new maximal subgroups of F F of infinite index, among which, a maximal subgroup of infinite index which acts transitively on the set D \mathcal D and the construction of an elementary amenable subgroup of F F which is maximal in a normal subgroup of F F .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信