𝖮𝗎𝗍(𝖥_{𝗇})子群的双曲作用和第二有界同调

IF 2 4区 数学 Q1 MATHEMATICS
M. Handel, L. Mosher
{"title":"𝖮𝗎𝗍(𝖥_{𝗇})子群的双曲作用和第二有界同调","authors":"M. Handel, L. Mosher","doi":"10.1090/memo/1454","DOIUrl":null,"url":null,"abstract":"<p>In this two part work we prove that for every finitely generated subgroup <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma greater-than sans-serif upper O sans-serif u sans-serif t left-parenthesis upper F Subscript n Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">O</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">u</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>F</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma >{\\mathsf {Out}}(F_n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, either <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is virtually abelian or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Subscript b Superscript 2 Baseline left-parenthesis normal upper Gamma semicolon double-struck upper R right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>H</mml:mi>\n <mml:mi>b</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^2_b(\\Gamma ;{\\mathbb {R}})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> contains a vector space embedding of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\ell ^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The method uses actions on hyperbolic spaces. In Part I we focus on the case of infinite lamination subgroups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>—those for which the set of all attracting laminations of all elements of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an infinite set—using actions on free splitting complexes of free groups. In Part II we focus on finite lamination subgroups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and on the construction of useful new hyperbolic actions of those subgroups.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"114 12","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hyperbolic Actions and 2nd Bounded Cohomology of Subgroups of 𝖮𝗎𝗍(𝖥_{𝗇})\",\"authors\":\"M. Handel, L. Mosher\",\"doi\":\"10.1090/memo/1454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this two part work we prove that for every finitely generated subgroup <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma greater-than sans-serif upper O sans-serif u sans-serif t left-parenthesis upper F Subscript n Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">O</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">u</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>F</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma >{\\\\mathsf {Out}}(F_n)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, either <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is virtually abelian or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Subscript b Superscript 2 Baseline left-parenthesis normal upper Gamma semicolon double-struck upper R right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msubsup>\\n <mml:mi>H</mml:mi>\\n <mml:mi>b</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo>;</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^2_b(\\\\Gamma ;{\\\\mathbb {R}})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> contains a vector space embedding of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l Superscript 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell ^1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The method uses actions on hyperbolic spaces. In Part I we focus on the case of infinite lamination subgroups <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>—those for which the set of all attracting laminations of all elements of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an infinite set—using actions on free splitting complexes of free groups. In Part II we focus on finite lamination subgroups <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and on the construction of useful new hyperbolic actions of those subgroups.</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\"114 12\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1454\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1454","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在这两部分的工作中,我们证明了对于每一个有限生成的子群Γ > Out (F n) \Gamma >{\mathsf {Out}}(F_n), Γ \Gamma要么是虚阿贝尔的,要么是h2 (Γ;R) H^2_b(\Gamma;{\mathbb {R}})包含一个向量空间嵌入,它包含一个向量空间嵌入。该方法在双曲空间上使用动作。在第一部分中,我们主要讨论无限层叠子群Γ \Gamma的情况——其中Γ \Gamma的所有元素的所有吸引层叠的集合是一个无限集——利用自由群的自由分裂配合物上的作用。在第二部分中,我们重点讨论了有限层合子群Γ \Gamma以及这些子群的有用的新双曲作用的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperbolic Actions and 2nd Bounded Cohomology of Subgroups of 𝖮𝗎𝗍(𝖥_{𝗇})

In this two part work we prove that for every finitely generated subgroup Γ > O u t ( F n ) \Gamma >{\mathsf {Out}}(F_n) , either Γ \Gamma is virtually abelian or H b 2 ( Γ ; R ) H^2_b(\Gamma ;{\mathbb {R}}) contains a vector space embedding of 1 \ell ^1 . The method uses actions on hyperbolic spaces. In Part I we focus on the case of infinite lamination subgroups Γ \Gamma —those for which the set of all attracting laminations of all elements of Γ \Gamma is an infinite set—using actions on free splitting complexes of free groups. In Part II we focus on finite lamination subgroups Γ \Gamma and on the construction of useful new hyperbolic actions of those subgroups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信