{"title":"𝖮𝗎𝗍(𝖥_{𝗇})子群的双曲作用和第二有界同调","authors":"M. Handel, L. Mosher","doi":"10.1090/memo/1454","DOIUrl":null,"url":null,"abstract":"<p>In this two part work we prove that for every finitely generated subgroup <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma greater-than sans-serif upper O sans-serif u sans-serif t left-parenthesis upper F Subscript n Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">O</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">u</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>F</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma >{\\mathsf {Out}}(F_n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, either <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is virtually abelian or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Subscript b Superscript 2 Baseline left-parenthesis normal upper Gamma semicolon double-struck upper R right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>H</mml:mi>\n <mml:mi>b</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^2_b(\\Gamma ;{\\mathbb {R}})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> contains a vector space embedding of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\ell ^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The method uses actions on hyperbolic spaces. In Part I we focus on the case of infinite lamination subgroups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>—those for which the set of all attracting laminations of all elements of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an infinite set—using actions on free splitting complexes of free groups. In Part II we focus on finite lamination subgroups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and on the construction of useful new hyperbolic actions of those subgroups.</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"114 12","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hyperbolic Actions and 2nd Bounded Cohomology of Subgroups of 𝖮𝗎𝗍(𝖥_{𝗇})\",\"authors\":\"M. Handel, L. Mosher\",\"doi\":\"10.1090/memo/1454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this two part work we prove that for every finitely generated subgroup <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma greater-than sans-serif upper O sans-serif u sans-serif t left-parenthesis upper F Subscript n Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"sans-serif\\\">O</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">u</mml:mi>\\n <mml:mi mathvariant=\\\"sans-serif\\\">t</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msub>\\n <mml:mi>F</mml:mi>\\n <mml:mi>n</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma >{\\\\mathsf {Out}}(F_n)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, either <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is virtually abelian or <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Subscript b Superscript 2 Baseline left-parenthesis normal upper Gamma semicolon double-struck upper R right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msubsup>\\n <mml:mi>H</mml:mi>\\n <mml:mi>b</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mo>;</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^2_b(\\\\Gamma ;{\\\\mathbb {R}})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> contains a vector space embedding of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l Superscript 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell ^1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. The method uses actions on hyperbolic spaces. In Part I we focus on the case of infinite lamination subgroups <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>—those for which the set of all attracting laminations of all elements of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an infinite set—using actions on free splitting complexes of free groups. In Part II we focus on finite lamination subgroups <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and on the construction of useful new hyperbolic actions of those subgroups.</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\"114 12\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1454\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1454","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hyperbolic Actions and 2nd Bounded Cohomology of Subgroups of 𝖮𝗎𝗍(𝖥_{𝗇})
In this two part work we prove that for every finitely generated subgroup Γ>Out(Fn)\Gamma >{\mathsf {Out}}(F_n), either Γ\Gamma is virtually abelian or Hb2(Γ;R)H^2_b(\Gamma ;{\mathbb {R}}) contains a vector space embedding of ℓ1\ell ^1. The method uses actions on hyperbolic spaces. In Part I we focus on the case of infinite lamination subgroups Γ\Gamma—those for which the set of all attracting laminations of all elements of Γ\Gamma is an infinite set—using actions on free splitting complexes of free groups. In Part II we focus on finite lamination subgroups Γ\Gamma and on the construction of useful new hyperbolic actions of those subgroups.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.