XBert - 越南语文本中仇恨言论检测模型

Duy Nguyen Minh Le, Huy Gia Le, Hai Thanh Hoang, Vu Anh Hoang
{"title":"XBert - 越南语文本中仇恨言论检测模型","authors":"Duy Nguyen Minh Le, Huy Gia Le, Hai Thanh Hoang, Vu Anh Hoang","doi":"10.46338/ijetae1223_01","DOIUrl":null,"url":null,"abstract":"— In the digital age, social media's pervasive influence has inadvertently escalated the prevalence of hate speech and offensive comments, with alarming implications for mental health. There is increasing evidence indicating a clear correlation between two factors. exposure to such toxic online content and the onset of depression among users, particularly affecting vulnerable groups like content creators and channel owners. Addressing this critical issue, our research introduces XBert, a model for detecting hostile and provocative language in Vietnamese. We propose an approach related to data preprocessing, improved tokenization, and model fine-tuning. We have modified the architecture of the Roberta model, used the EDA technique, and added a dropout parameter to the tokenizer. Our model achieved an accuracy of 99.75% and an F1-Macro score of 98.05%. This is a promising result for a model detecting provocative and hostile language in Vietnamese.","PeriodicalId":169403,"journal":{"name":"International Journal of Emerging Technology and Advanced Engineering","volume":"113 49","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XBert - A Model for Hate Speech Detection in Vietnamese Text\",\"authors\":\"Duy Nguyen Minh Le, Huy Gia Le, Hai Thanh Hoang, Vu Anh Hoang\",\"doi\":\"10.46338/ijetae1223_01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— In the digital age, social media's pervasive influence has inadvertently escalated the prevalence of hate speech and offensive comments, with alarming implications for mental health. There is increasing evidence indicating a clear correlation between two factors. exposure to such toxic online content and the onset of depression among users, particularly affecting vulnerable groups like content creators and channel owners. Addressing this critical issue, our research introduces XBert, a model for detecting hostile and provocative language in Vietnamese. We propose an approach related to data preprocessing, improved tokenization, and model fine-tuning. We have modified the architecture of the Roberta model, used the EDA technique, and added a dropout parameter to the tokenizer. Our model achieved an accuracy of 99.75% and an F1-Macro score of 98.05%. This is a promising result for a model detecting provocative and hostile language in Vietnamese.\",\"PeriodicalId\":169403,\"journal\":{\"name\":\"International Journal of Emerging Technology and Advanced Engineering\",\"volume\":\"113 49\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Emerging Technology and Advanced Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46338/ijetae1223_01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Technology and Advanced Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46338/ijetae1223_01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

-在数字时代,社交媒体无处不在的影响力无意中加剧了仇恨言论和冒犯性评论的流行,对心理健康产生了令人担忧的影响。越来越多的证据表明,两个因素之间存在明显的相关性。接触到这些有毒的网络内容,用户会产生抑郁情绪,尤其是对内容创作者和频道所有者等弱势群体的影响。为了解决这个关键问题,我们的研究引入了XBert,这是一个检测越南语中敌对和挑衅性语言的模型。我们提出了一种与数据预处理、改进标记化和模型微调相关的方法。我们修改了Roberta模型的体系结构,使用了EDA技术,并向标记器添加了dropout参数。我们的模型达到了99.75%的准确率和98.05%的F1-Macro评分。这对于越南语中挑衅性和敌意语言的检测模型来说是一个很有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XBert - A Model for Hate Speech Detection in Vietnamese Text
— In the digital age, social media's pervasive influence has inadvertently escalated the prevalence of hate speech and offensive comments, with alarming implications for mental health. There is increasing evidence indicating a clear correlation between two factors. exposure to such toxic online content and the onset of depression among users, particularly affecting vulnerable groups like content creators and channel owners. Addressing this critical issue, our research introduces XBert, a model for detecting hostile and provocative language in Vietnamese. We propose an approach related to data preprocessing, improved tokenization, and model fine-tuning. We have modified the architecture of the Roberta model, used the EDA technique, and added a dropout parameter to the tokenizer. Our model achieved an accuracy of 99.75% and an F1-Macro score of 98.05%. This is a promising result for a model detecting provocative and hostile language in Vietnamese.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信