用于车道级异常驾驶行为识别的变形门控递归网络

IF 1.2 Q4 REMOTE SENSING
Guojiang Shen, Juntao Wang, Xiangjie Kong, Zhanhao Ji, Bing Zhu, Tie Qiu
{"title":"用于车道级异常驾驶行为识别的变形门控递归网络","authors":"Guojiang Shen, Juntao Wang, Xiangjie Kong, Zhanhao Ji, Bing Zhu, Tie Qiu","doi":"10.1145/3635141","DOIUrl":null,"url":null,"abstract":"As a significant part of traffic accident prevention, abnormal driving behavior recognition has been receiving extensive attention. However, the granularity of existing abnormal driving behavior recognition is mostly at road-level, and these methods’ high complexity leads to high overhead on training and recognition. In this article, we propose a deformation gated recurrent network for lane-level abnormal driving behavior recognition. Firstly, we use conditional random field model to calculate the lane change necessity of the vehicle, which helps us to distinguish whether the lane-changing behavior is reasonable. Secondly, we propose deformation gated recurrent network (DF-GRN) and trajectory entropy to capture the implicit relationship between trajectories and shorten recognition time. Finally, we get classified results including aggressive, distracted and normal driving behavior from the network. Distracted and aggressive behavior will be marked as anomaly. The effectiveness and real-time nature of the network are verified by experiments on Hangzhou and Chengdu location datasets.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation Gated Recurrent Network for Lane-Level Abnormal Driving Behavior Recognition\",\"authors\":\"Guojiang Shen, Juntao Wang, Xiangjie Kong, Zhanhao Ji, Bing Zhu, Tie Qiu\",\"doi\":\"10.1145/3635141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a significant part of traffic accident prevention, abnormal driving behavior recognition has been receiving extensive attention. However, the granularity of existing abnormal driving behavior recognition is mostly at road-level, and these methods’ high complexity leads to high overhead on training and recognition. In this article, we propose a deformation gated recurrent network for lane-level abnormal driving behavior recognition. Firstly, we use conditional random field model to calculate the lane change necessity of the vehicle, which helps us to distinguish whether the lane-changing behavior is reasonable. Secondly, we propose deformation gated recurrent network (DF-GRN) and trajectory entropy to capture the implicit relationship between trajectories and shorten recognition time. Finally, we get classified results including aggressive, distracted and normal driving behavior from the network. Distracted and aggressive behavior will be marked as anomaly. The effectiveness and real-time nature of the network are verified by experiments on Hangzhou and Chengdu location datasets.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3635141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3635141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

异常驾驶行为识别作为交通事故预防的重要组成部分,一直受到人们的广泛关注。然而,现有异常驾驶行为识别的粒度多在道路层面,这些方法的高复杂度导致训练和识别开销较大。本文提出了一种用于车道级异常驾驶行为识别的变形门控递归网络。首先,利用条件随机场模型计算车辆变道必要性,从而判断车辆变道行为是否合理;其次,我们提出变形门控递归网络(DF-GRN)和轨迹熵来捕捉轨迹之间的隐式关系,缩短识别时间。最后,我们从网络中得到分类结果,包括攻击性、分心和正常驾驶行为。分心和攻击性行为会被标记为异常。通过在杭州和成都定位数据集上的实验,验证了该网络的有效性和实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation Gated Recurrent Network for Lane-Level Abnormal Driving Behavior Recognition
As a significant part of traffic accident prevention, abnormal driving behavior recognition has been receiving extensive attention. However, the granularity of existing abnormal driving behavior recognition is mostly at road-level, and these methods’ high complexity leads to high overhead on training and recognition. In this article, we propose a deformation gated recurrent network for lane-level abnormal driving behavior recognition. Firstly, we use conditional random field model to calculate the lane change necessity of the vehicle, which helps us to distinguish whether the lane-changing behavior is reasonable. Secondly, we propose deformation gated recurrent network (DF-GRN) and trajectory entropy to capture the implicit relationship between trajectories and shorten recognition time. Finally, we get classified results including aggressive, distracted and normal driving behavior from the network. Distracted and aggressive behavior will be marked as anomaly. The effectiveness and real-time nature of the network are verified by experiments on Hangzhou and Chengdu location datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信