用于无人机生物启发变形机翼 CFD 仿真的深度神经网络建模

Q2 Engineering
F. Marin, D. Buruiana, Viorica Ghisman, M. Marin
{"title":"用于无人机生物启发变形机翼 CFD 仿真的深度神经网络建模","authors":"F. Marin, D. Buruiana, Viorica Ghisman, M. Marin","doi":"10.13111/2066-8201.2023.15.4.12","DOIUrl":null,"url":null,"abstract":"In this paper we present a deep neural network modelling using Computational Fluid Dynamics (CFD) simulations data in order to optimize control of bioinspired morphing wings of a drone. Drones flight needs to consider variation in aerodynamic conditions that cannot all be optimized using a fixed aerodynamic profile. Nature solves this issue as birds are changing continuously the shape of their wings depending of the aerodynamic current requirements. One important issue for fixed wing drone is the landing as it is unable to control and most of the time consequences are some damages at the nose. An optimized shape of the wing at landing will avoid this situation. Another issue is that wings with a maximum surface are sensitive to stronger head winds; while wings with a small surface allowing the drone to fly faster. A wing with a morphing surface could adapt its aerial surface to optimize aerodynamic performance to specific flight situations. A morphing wing needs to be controlled in an optimized manner taking into account current aerodynamics parameters. Predicting optimized positions of the wing needs to consider (CFD) prior simulation parameters. The scenarios for flight require an important number of CFD simulation to address different conditions and geometric shapes. We compare in this paper neural network architecture suitable to predict wing shape according to current conditions. Deep neural network (DNN) is trained using data resulted out of CFD simulations to estimate flight conditions.","PeriodicalId":37556,"journal":{"name":"INCAS Bulletin","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep neural network modeling for CFD simulation of drone bioinspired morphing wings\",\"authors\":\"F. Marin, D. Buruiana, Viorica Ghisman, M. Marin\",\"doi\":\"10.13111/2066-8201.2023.15.4.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a deep neural network modelling using Computational Fluid Dynamics (CFD) simulations data in order to optimize control of bioinspired morphing wings of a drone. Drones flight needs to consider variation in aerodynamic conditions that cannot all be optimized using a fixed aerodynamic profile. Nature solves this issue as birds are changing continuously the shape of their wings depending of the aerodynamic current requirements. One important issue for fixed wing drone is the landing as it is unable to control and most of the time consequences are some damages at the nose. An optimized shape of the wing at landing will avoid this situation. Another issue is that wings with a maximum surface are sensitive to stronger head winds; while wings with a small surface allowing the drone to fly faster. A wing with a morphing surface could adapt its aerial surface to optimize aerodynamic performance to specific flight situations. A morphing wing needs to be controlled in an optimized manner taking into account current aerodynamics parameters. Predicting optimized positions of the wing needs to consider (CFD) prior simulation parameters. The scenarios for flight require an important number of CFD simulation to address different conditions and geometric shapes. We compare in this paper neural network architecture suitable to predict wing shape according to current conditions. Deep neural network (DNN) is trained using data resulted out of CFD simulations to estimate flight conditions.\",\"PeriodicalId\":37556,\"journal\":{\"name\":\"INCAS Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INCAS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13111/2066-8201.2023.15.4.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INCAS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13111/2066-8201.2023.15.4.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了优化无人机仿生变形翼的控制,本文利用计算流体动力学(CFD)仿真数据建立了一种深度神经网络模型。无人机的飞行需要考虑空气动力学条件的变化,而这些变化不可能全部通过固定的空气动力学剖面来优化。大自然解决了这个问题,因为鸟类根据空气动力学的要求不断改变翅膀的形状。固定翼无人机的一个重要问题是着陆,因为它无法控制,大多数时候的后果是鼻子受到一些损害。在着陆时机翼的优化形状将避免这种情况。另一个问题是,最大表面积的机翼对更强的逆风很敏感;而表面较小的机翼则可以让无人机飞得更快。具有变形表面的机翼可以根据特定的飞行情况调整其空中表面以优化气动性能。变形翼需要在考虑当前空气动力学参数的情况下以优化的方式进行控制。预测机翼的优化位置需要考虑CFD的先验仿真参数。飞行场景需要大量的CFD模拟来处理不同的条件和几何形状。根据目前的情况,比较了适合预测翼型的神经网络结构。深度神经网络(Deep neural network, DNN)是利用CFD模拟数据进行训练来估计飞行条件的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep neural network modeling for CFD simulation of drone bioinspired morphing wings
In this paper we present a deep neural network modelling using Computational Fluid Dynamics (CFD) simulations data in order to optimize control of bioinspired morphing wings of a drone. Drones flight needs to consider variation in aerodynamic conditions that cannot all be optimized using a fixed aerodynamic profile. Nature solves this issue as birds are changing continuously the shape of their wings depending of the aerodynamic current requirements. One important issue for fixed wing drone is the landing as it is unable to control and most of the time consequences are some damages at the nose. An optimized shape of the wing at landing will avoid this situation. Another issue is that wings with a maximum surface are sensitive to stronger head winds; while wings with a small surface allowing the drone to fly faster. A wing with a morphing surface could adapt its aerial surface to optimize aerodynamic performance to specific flight situations. A morphing wing needs to be controlled in an optimized manner taking into account current aerodynamics parameters. Predicting optimized positions of the wing needs to consider (CFD) prior simulation parameters. The scenarios for flight require an important number of CFD simulation to address different conditions and geometric shapes. We compare in this paper neural network architecture suitable to predict wing shape according to current conditions. Deep neural network (DNN) is trained using data resulted out of CFD simulations to estimate flight conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INCAS Bulletin
INCAS Bulletin Engineering-Aerospace Engineering
自引率
0.00%
发文量
50
审稿时长
8 weeks
期刊介绍: INCAS BULLETIN is a scientific quartely journal published by INCAS – National Institute for Aerospace Research “Elie Carafoli” (under the aegis of The Romanian Academy) Its current focus is the aerospace field, covering fluid mechanics, aerodynamics, flight theory, aeroelasticity, structures, applied control, mechatronics, experimental aerodynamics, computational methods. All submitted papers are peer-reviewed. The journal will publish reports and short research original papers of substance. Unique features distinguishing this journal: R & D reports in aerospace sciences in Romania The INCAS BULLETIN of the National Institute for Aerospace Research "Elie Carafoli" includes the following sections: 1) FULL PAPERS. -Strength of materials, elasticity, plasticity, aeroelasticity, static and dynamic analysis of structures, vibrations and impact. -Systems, mechatronics and control in aerospace. -Materials and tribology. -Kinematics and dynamics of mechanisms, friction, lubrication. -Measurement technique. -Aeroacoustics, ventilation, wind motors. -Management in Aerospace Activities. 2) TECHNICAL-SCIENTIFIC NOTES and REPORTS. Includes: case studies, technical-scientific notes and reports on published areas. 3) INCAS NEWS. Promote and emphasise INCAS technical base and achievements. 4) BOOK REVIEWS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信