DR-Occluder:使用可微分渲染生成遮挡器

Jiaxian Wu, Yue Lin, Dehui Lu
{"title":"DR-Occluder:使用可微分渲染生成遮挡器","authors":"Jiaxian Wu, Yue Lin, Dehui Lu","doi":"10.1145/3618346","DOIUrl":null,"url":null,"abstract":"The target of the occluder is to use very few faces to maintain similar occlusion properties of the original 3D model. In this paper, we present DR-Occluder, a novel coarse-to-fine framework for occluder generation that leverages differentiable rendering to optimize a triangle set to an occluder. Unlike prior work, which has not utilized differentiable rendering for this task, our approach provides the ability to optimize a 3D shape to defined targets. Given a 3D model as input, our method first projects it to silhouette images, which are then processed by a convolution network to output a group of vertex offsets. These offsets are used to transform a group of distributed triangles into a preliminary occluder, which is further optimized by differentiable rendering. Finally, triangles whose area is smaller than a threshold are removed to obtain the final occluder. Our extensive experiments demonstrate that DR-Occluder significantly outperforms state-of-the-art methods in terms of occlusion quality. Furthermore, we compare the performance of our method with other approaches in a commercial engine, providing compelling evidence of its effectiveness.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"58 23","pages":"1 - 14"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DR-Occluder: Generating Occluders Using Differentiable Rendering\",\"authors\":\"Jiaxian Wu, Yue Lin, Dehui Lu\",\"doi\":\"10.1145/3618346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The target of the occluder is to use very few faces to maintain similar occlusion properties of the original 3D model. In this paper, we present DR-Occluder, a novel coarse-to-fine framework for occluder generation that leverages differentiable rendering to optimize a triangle set to an occluder. Unlike prior work, which has not utilized differentiable rendering for this task, our approach provides the ability to optimize a 3D shape to defined targets. Given a 3D model as input, our method first projects it to silhouette images, which are then processed by a convolution network to output a group of vertex offsets. These offsets are used to transform a group of distributed triangles into a preliminary occluder, which is further optimized by differentiable rendering. Finally, triangles whose area is smaller than a threshold are removed to obtain the final occluder. Our extensive experiments demonstrate that DR-Occluder significantly outperforms state-of-the-art methods in terms of occlusion quality. Furthermore, we compare the performance of our method with other approaches in a commercial engine, providing compelling evidence of its effectiveness.\",\"PeriodicalId\":7077,\"journal\":{\"name\":\"ACM Transactions on Graphics (TOG)\",\"volume\":\"58 23\",\"pages\":\"1 - 14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics (TOG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3618346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遮挡器的目标是使用很少的面来保持原始3D模型的相似遮挡属性。在本文中,我们提出了DR-Occluder,这是一种新的用于遮挡物生成的从粗到精的框架,它利用可微分渲染来优化一个三角形集到遮挡物。与之前的工作不同,之前的工作没有利用可微分渲染来完成这项任务,我们的方法提供了优化3D形状以定义目标的能力。给定一个3D模型作为输入,我们的方法首先将其投影到轮廓图像上,然后由卷积网络处理以输出一组顶点偏移。利用这些偏移量将一组分布三角形转换成一个初步的遮挡物,并通过可微渲染进一步优化遮挡物。最后,去除面积小于阈值的三角形,得到最终的遮挡物。我们的大量实验表明,DR-Occluder在遮挡质量方面明显优于最先进的方法。此外,我们将我们的方法与商业引擎中的其他方法的性能进行了比较,为其有效性提供了令人信服的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DR-Occluder: Generating Occluders Using Differentiable Rendering
The target of the occluder is to use very few faces to maintain similar occlusion properties of the original 3D model. In this paper, we present DR-Occluder, a novel coarse-to-fine framework for occluder generation that leverages differentiable rendering to optimize a triangle set to an occluder. Unlike prior work, which has not utilized differentiable rendering for this task, our approach provides the ability to optimize a 3D shape to defined targets. Given a 3D model as input, our method first projects it to silhouette images, which are then processed by a convolution network to output a group of vertex offsets. These offsets are used to transform a group of distributed triangles into a preliminary occluder, which is further optimized by differentiable rendering. Finally, triangles whose area is smaller than a threshold are removed to obtain the final occluder. Our extensive experiments demonstrate that DR-Occluder significantly outperforms state-of-the-art methods in terms of occlusion quality. Furthermore, we compare the performance of our method with other approaches in a commercial engine, providing compelling evidence of its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信