具有阿利效应的猎物-捕食者模型的分岔分析和混沌控制

IF 0.7 Q2 MATHEMATICS
M. B. Almatrafi, Messaoud Berkal
{"title":"具有阿利效应的猎物-捕食者模型的分岔分析和混沌控制","authors":"M. B. Almatrafi, Messaoud Berkal","doi":"10.28924/2291-8639-21-2023-131","DOIUrl":null,"url":null,"abstract":"The main purpose of this work is to discuss the dynamics of a predator-prey dynamical system with Allee effect. The conformable fractional derivative is applied to convert the fractional derivatives which appear in the governing model into ordinary derivatives. We use the piecewise-constant approximation method to discritize the considered model. We also investigate the occurrence of positive equilibrium points. Moreover, we analyse the stability of the equilibrium point using some stability theorems. This work also explores a Neimark-Sacker bifurcation and a period-doubling bifurcation using the theory of bifurcations. The distance between the obtained equilibrium point and some closed curves is examined for various values for the considered bifurcation parameter. The chaos control is nicely analysed using the hybrid control approach. Furthermore, we present the maximum Lyapunov exponents for different values for the bifurcation parameter. Numerical simulations are utilized to ensure that the obtained theoretical results are correct. The used techniques can be applied to deal with predator-prey models in various versions.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"74 10","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation Analysis and Chaos Control for Prey-Predator Model With Allee Effect\",\"authors\":\"M. B. Almatrafi, Messaoud Berkal\",\"doi\":\"10.28924/2291-8639-21-2023-131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this work is to discuss the dynamics of a predator-prey dynamical system with Allee effect. The conformable fractional derivative is applied to convert the fractional derivatives which appear in the governing model into ordinary derivatives. We use the piecewise-constant approximation method to discritize the considered model. We also investigate the occurrence of positive equilibrium points. Moreover, we analyse the stability of the equilibrium point using some stability theorems. This work also explores a Neimark-Sacker bifurcation and a period-doubling bifurcation using the theory of bifurcations. The distance between the obtained equilibrium point and some closed curves is examined for various values for the considered bifurcation parameter. The chaos control is nicely analysed using the hybrid control approach. Furthermore, we present the maximum Lyapunov exponents for different values for the bifurcation parameter. Numerical simulations are utilized to ensure that the obtained theoretical results are correct. The used techniques can be applied to deal with predator-prey models in various versions.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"74 10\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是讨论具有Allee效应的捕食-食饵动力系统的动力学问题。利用适形分数阶导数将控制模型中的分数阶导数转化为普通导数。我们使用分段常数近似方法来判别所考虑的模型。我们还研究了正平衡点的出现。并利用稳定性定理分析了平衡点的稳定性。本文还利用分岔理论探讨了neimmark - sacker分岔和倍周期分岔。对于所考虑的分岔参数的不同值,检验了所得到的平衡点与某些闭合曲线之间的距离。利用混合控制方法对混沌控制进行了很好的分析。进一步,我们给出了不同分岔参数值下的最大Lyapunov指数。通过数值模拟验证了所得理论结果的正确性。所使用的技术可以应用于处理各种版本的捕食者-猎物模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation Analysis and Chaos Control for Prey-Predator Model With Allee Effect
The main purpose of this work is to discuss the dynamics of a predator-prey dynamical system with Allee effect. The conformable fractional derivative is applied to convert the fractional derivatives which appear in the governing model into ordinary derivatives. We use the piecewise-constant approximation method to discritize the considered model. We also investigate the occurrence of positive equilibrium points. Moreover, we analyse the stability of the equilibrium point using some stability theorems. This work also explores a Neimark-Sacker bifurcation and a period-doubling bifurcation using the theory of bifurcations. The distance between the obtained equilibrium point and some closed curves is examined for various values for the considered bifurcation parameter. The chaos control is nicely analysed using the hybrid control approach. Furthermore, we present the maximum Lyapunov exponents for different values for the bifurcation parameter. Numerical simulations are utilized to ensure that the obtained theoretical results are correct. The used techniques can be applied to deal with predator-prey models in various versions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信