Ziyin Qu, Minchen Li, Yin Yang, Chenfanfu Jiang, Fernando de Goes
{"title":"动力塑料:中尺度非弹性流动的拉格朗日/欧勒混合求解器","authors":"Ziyin Qu, Minchen Li, Yin Yang, Chenfanfu Jiang, Fernando de Goes","doi":"10.1145/3618344","DOIUrl":null,"url":null,"abstract":"We present a novel hybrid Lagrangian/Eulerian method for simulating inelastic flows that generates high-quality particle distributions with adaptive volumes. At its core, our approach integrates an updated Lagrangian time discretization of continuum mechanics with the Power Particle-In-Cell geometric representation of deformable materials. As a result, we obtain material points described by optimized density kernels that precisely track the varying particle volumes both spatially and temporally. For efficient CFL-rate simulations, we also propose an implicit time integration for our system using a non-linear Gauss-Seidel solver inspired by X-PBD, viewing Eulerian nodal velocities as primal variables. We demonstrate the versatility of our method with simulations of mesoscale bubbles, sands, liquid, and foams.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"75 17","pages":"1 - 11"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Plastics: A Hybrid Lagrangian/Eulerian Solver for Mesoscale Inelastic Flows\",\"authors\":\"Ziyin Qu, Minchen Li, Yin Yang, Chenfanfu Jiang, Fernando de Goes\",\"doi\":\"10.1145/3618344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel hybrid Lagrangian/Eulerian method for simulating inelastic flows that generates high-quality particle distributions with adaptive volumes. At its core, our approach integrates an updated Lagrangian time discretization of continuum mechanics with the Power Particle-In-Cell geometric representation of deformable materials. As a result, we obtain material points described by optimized density kernels that precisely track the varying particle volumes both spatially and temporally. For efficient CFL-rate simulations, we also propose an implicit time integration for our system using a non-linear Gauss-Seidel solver inspired by X-PBD, viewing Eulerian nodal velocities as primal variables. We demonstrate the versatility of our method with simulations of mesoscale bubbles, sands, liquid, and foams.\",\"PeriodicalId\":7077,\"journal\":{\"name\":\"ACM Transactions on Graphics (TOG)\",\"volume\":\"75 17\",\"pages\":\"1 - 11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics (TOG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3618344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power Plastics: A Hybrid Lagrangian/Eulerian Solver for Mesoscale Inelastic Flows
We present a novel hybrid Lagrangian/Eulerian method for simulating inelastic flows that generates high-quality particle distributions with adaptive volumes. At its core, our approach integrates an updated Lagrangian time discretization of continuum mechanics with the Power Particle-In-Cell geometric representation of deformable materials. As a result, we obtain material points described by optimized density kernels that precisely track the varying particle volumes both spatially and temporally. For efficient CFL-rate simulations, we also propose an implicit time integration for our system using a non-linear Gauss-Seidel solver inspired by X-PBD, viewing Eulerian nodal velocities as primal variables. We demonstrate the versatility of our method with simulations of mesoscale bubbles, sands, liquid, and foams.