海底摩擦力在调解威德尔环流对地表应力和浮力通量变化的反应中的作用

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY
J. Neme, M. England, A. Hogg, Hemant Khatri, S. Griffies
{"title":"海底摩擦力在调解威德尔环流对地表应力和浮力通量变化的反应中的作用","authors":"J. Neme, M. England, A. Hogg, Hemant Khatri, S. Griffies","doi":"10.1175/jpo-d-23-0165.1","DOIUrl":null,"url":null,"abstract":"\nThe Weddell Gyre is one of the dominant features of the Southern Ocean circulation and its dynamics have been linked to processes of climatic relevance. Variability in the strength of the gyre’s horizontal transport has been linked to heat transport towards the Antarctic margins and changes in the properties and rates of export of bottom waters from the Weddell Sea region to the abyssal global ocean. However, the precise physical mechanisms that force variability in the Weddell’s lateral circulation across different timescales remain unknown. In this study, we use a barotropic vorticity budget from a mesoscale eddy active model simulation to attribute changes in gyre strength to variability in possible driving processes. We find that the Weddell Gyre’s circulation is sensitive to bottom friction associated with the overflowing dense waters at its western boundary. In particular, an increase in the production of dense waters at the southwestern continental shelf strengthens the bottom flow at the gyre’s western boundary, yet this drives a weakening of the depth-integrated barotropic circulation via increased bottom friction. Strengthening surface winds initially accelerates the gyre, but within a few years the response reverses once dense water production and export increases. These results reveal that the gyre can weaken in response to stronger surface winds, putting into question the traditional assumption of a direct relationship between surface stress and gyre strength in regions where overflowing dense water forms part of the depth-integrated flow.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of bottom friction in mediating the response of the Weddell Gyre circulation to changes in surface stress and buoyancy fluxes\",\"authors\":\"J. Neme, M. England, A. Hogg, Hemant Khatri, S. Griffies\",\"doi\":\"10.1175/jpo-d-23-0165.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe Weddell Gyre is one of the dominant features of the Southern Ocean circulation and its dynamics have been linked to processes of climatic relevance. Variability in the strength of the gyre’s horizontal transport has been linked to heat transport towards the Antarctic margins and changes in the properties and rates of export of bottom waters from the Weddell Sea region to the abyssal global ocean. However, the precise physical mechanisms that force variability in the Weddell’s lateral circulation across different timescales remain unknown. In this study, we use a barotropic vorticity budget from a mesoscale eddy active model simulation to attribute changes in gyre strength to variability in possible driving processes. We find that the Weddell Gyre’s circulation is sensitive to bottom friction associated with the overflowing dense waters at its western boundary. In particular, an increase in the production of dense waters at the southwestern continental shelf strengthens the bottom flow at the gyre’s western boundary, yet this drives a weakening of the depth-integrated barotropic circulation via increased bottom friction. Strengthening surface winds initially accelerates the gyre, but within a few years the response reverses once dense water production and export increases. These results reveal that the gyre can weaken in response to stronger surface winds, putting into question the traditional assumption of a direct relationship between surface stress and gyre strength in regions where overflowing dense water forms part of the depth-integrated flow.\",\"PeriodicalId\":56115,\"journal\":{\"name\":\"Journal of Physical Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jpo-d-23-0165.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0165.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

威德尔环流是南大洋环流的主要特征之一,其动力学与气候相关过程有关。环流水平输送强度的变化与向南极边缘的热输送以及从威德尔海地区向深海全球海洋的底水输出的性质和速率的变化有关。然而,威德尔横向环流在不同时间尺度上的变化的精确物理机制仍然未知。在这项研究中,我们使用来自中尺度涡旋主动模式模拟的正压涡量预算来将环流强度的变化归因于可能驱动过程的变异性。我们发现威德尔环流的环流对底部摩擦非常敏感,这种摩擦与威德尔环流西部边界的稠密水溢出有关。特别是,西南大陆架密集水域的增加加强了环流西部边界的底部流动,但这通过增加底部摩擦导致了深度一体化正压环流的减弱。增强的地面风最初加速了环流,但在几年内,一旦密集水的生产和出口增加,反应就会逆转。这些结果表明,在地表强风的作用下,环流会减弱,这就对传统的假设提出了质疑,即在密集溢水形成深度一体化流的部分地区,地表应力和环流强度之间存在直接关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of bottom friction in mediating the response of the Weddell Gyre circulation to changes in surface stress and buoyancy fluxes
The Weddell Gyre is one of the dominant features of the Southern Ocean circulation and its dynamics have been linked to processes of climatic relevance. Variability in the strength of the gyre’s horizontal transport has been linked to heat transport towards the Antarctic margins and changes in the properties and rates of export of bottom waters from the Weddell Sea region to the abyssal global ocean. However, the precise physical mechanisms that force variability in the Weddell’s lateral circulation across different timescales remain unknown. In this study, we use a barotropic vorticity budget from a mesoscale eddy active model simulation to attribute changes in gyre strength to variability in possible driving processes. We find that the Weddell Gyre’s circulation is sensitive to bottom friction associated with the overflowing dense waters at its western boundary. In particular, an increase in the production of dense waters at the southwestern continental shelf strengthens the bottom flow at the gyre’s western boundary, yet this drives a weakening of the depth-integrated barotropic circulation via increased bottom friction. Strengthening surface winds initially accelerates the gyre, but within a few years the response reverses once dense water production and export increases. These results reveal that the gyre can weaken in response to stronger surface winds, putting into question the traditional assumption of a direct relationship between surface stress and gyre strength in regions where overflowing dense water forms part of the depth-integrated flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信