利用激光纹理加工工艺评估表面曲折度对有机涂层耐腐蚀性的影响

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Santiago Caraguay, Thiago Soares Pereira, Francisco Ratuznei, Miriam Zareth Parra Sejas, Milton Pereira, Fabio Antônio Xavier
{"title":"利用激光纹理加工工艺评估表面曲折度对有机涂层耐腐蚀性的影响","authors":"Santiago Caraguay, Thiago Soares Pereira, Francisco Ratuznei, Miriam Zareth Parra Sejas, Milton Pereira, Fabio Antônio Xavier","doi":"10.2351/7.0001107","DOIUrl":null,"url":null,"abstract":"Surface tortuosity is a quantitative measure of the complexity of a material's surface. It is commonly defined as the ratio between the real length of the surface over the shortest distance between two points on the surface. An increase in surface tortuosity has been found to have advantageous effects on the durability of coated parts when exposed to corrosive and humid conditions. Laser surface texturing, a versatile process, can be used to modify the surface tortuosity by creating various structure patterns on the surface of steel. This study aims to investigate the impact of V-shaped groove dimensions on the resistance against corrosion creep of an organic coating applied to textured surfaces. Comparative surface tortuosity measurements were obtained for different groove dimensions while keeping the aspect ratio and textured areas constant. V-shaped grooves with an aspect ratio of 1 and sizes of 50, 100, and 200 μm were machined on carbon steel AISI-A36. The distance between adjacent grooves was varied to achieve different textured areas, ranging from 10% to 60%. The surface roughness (Sa) and surface tortuosity were characterized. The performance of the coating was evaluated using an accelerated corrosion test based on ISO 12944-9. The results indicate that V-shaped grooves with dimensions of 100 μm and a textured area of 40% exhibit the lowest coating delamination. It is worth to mention that the performance of organic coatings is enhanced up to a certain optimal point by an increase in surface tortuosity. However, beyond this optimal point, further increases in tortuosity do not lead to an increased resistance to the propagation of corrosion.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of surface tortuosity on the corrosion resistance of organic coatings using laser texturing process\",\"authors\":\"Santiago Caraguay, Thiago Soares Pereira, Francisco Ratuznei, Miriam Zareth Parra Sejas, Milton Pereira, Fabio Antônio Xavier\",\"doi\":\"10.2351/7.0001107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface tortuosity is a quantitative measure of the complexity of a material's surface. It is commonly defined as the ratio between the real length of the surface over the shortest distance between two points on the surface. An increase in surface tortuosity has been found to have advantageous effects on the durability of coated parts when exposed to corrosive and humid conditions. Laser surface texturing, a versatile process, can be used to modify the surface tortuosity by creating various structure patterns on the surface of steel. This study aims to investigate the impact of V-shaped groove dimensions on the resistance against corrosion creep of an organic coating applied to textured surfaces. Comparative surface tortuosity measurements were obtained for different groove dimensions while keeping the aspect ratio and textured areas constant. V-shaped grooves with an aspect ratio of 1 and sizes of 50, 100, and 200 μm were machined on carbon steel AISI-A36. The distance between adjacent grooves was varied to achieve different textured areas, ranging from 10% to 60%. The surface roughness (Sa) and surface tortuosity were characterized. The performance of the coating was evaluated using an accelerated corrosion test based on ISO 12944-9. The results indicate that V-shaped grooves with dimensions of 100 μm and a textured area of 40% exhibit the lowest coating delamination. It is worth to mention that the performance of organic coatings is enhanced up to a certain optimal point by an increase in surface tortuosity. However, beyond this optimal point, further increases in tortuosity do not lead to an increased resistance to the propagation of corrosion.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001107\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001107","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

表面弯曲度是材料表面复杂性的定量度量。它通常被定义为表面的实际长度与表面上两点之间的最短距离之比。当暴露在腐蚀性和潮湿条件下时,表面弯曲度的增加对涂层部件的耐久性有有利的影响。激光表面变形是一种通用的工艺,可以通过在钢表面产生各种结构图案来改变表面扭曲度。本研究的目的是研究v形槽尺寸对应用于有织构表面的有机涂层抗腐蚀蠕变的影响。在保持长径比和织构面积不变的情况下,获得了不同凹槽尺寸的表面弯曲度对比测量结果。在AISI-A36碳钢上加工出宽高比为1、尺寸分别为50、100和200 μm的v形凹槽。通过改变相邻凹槽之间的距离来实现不同的纹理区域,范围从10%到60%不等。对表面粗糙度(Sa)和表面弯曲度进行了表征。采用基于ISO 12944-9的加速腐蚀试验评估涂层的性能。结果表明,尺寸为100 μm、织构面积为40%的v型沟槽涂层分层程度最低;值得一提的是,有机涂层的性能是通过增加表面扭曲度而提高到某一最佳点的。然而,在这个最佳点之外,弯曲度的进一步增加不会导致腐蚀扩展的阻力增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of surface tortuosity on the corrosion resistance of organic coatings using laser texturing process
Surface tortuosity is a quantitative measure of the complexity of a material's surface. It is commonly defined as the ratio between the real length of the surface over the shortest distance between two points on the surface. An increase in surface tortuosity has been found to have advantageous effects on the durability of coated parts when exposed to corrosive and humid conditions. Laser surface texturing, a versatile process, can be used to modify the surface tortuosity by creating various structure patterns on the surface of steel. This study aims to investigate the impact of V-shaped groove dimensions on the resistance against corrosion creep of an organic coating applied to textured surfaces. Comparative surface tortuosity measurements were obtained for different groove dimensions while keeping the aspect ratio and textured areas constant. V-shaped grooves with an aspect ratio of 1 and sizes of 50, 100, and 200 μm were machined on carbon steel AISI-A36. The distance between adjacent grooves was varied to achieve different textured areas, ranging from 10% to 60%. The surface roughness (Sa) and surface tortuosity were characterized. The performance of the coating was evaluated using an accelerated corrosion test based on ISO 12944-9. The results indicate that V-shaped grooves with dimensions of 100 μm and a textured area of 40% exhibit the lowest coating delamination. It is worth to mention that the performance of organic coatings is enhanced up to a certain optimal point by an increase in surface tortuosity. However, beyond this optimal point, further increases in tortuosity do not lead to an increased resistance to the propagation of corrosion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信