余热回收装置中的模块化蓄热器

IF 0.8 Q4 THERMODYNAMICS
Piotr Górszczak, Marcin Rywotycki, Marcin Hojny, Grzegorz Filo
{"title":"余热回收装置中的模块化蓄热器","authors":"Piotr Górszczak, Marcin Rywotycki, Marcin Hojny, Grzegorz Filo","doi":"10.24425/ather.2023.147548","DOIUrl":null,"url":null,"abstract":"The paper presents the methodology of designing a system for accumulating waste heat from industrial processes. The research aimed to analyse the fluid’s movement in the heat accumulator to unify the temperature field in the volume of water constituting the heat buffer. Using the computer program Ansys Fluent, a series of computational fluid dynamics simulations of the process of charging the heat storage with water at 60 ◦ C, 70 ◦ C, and 80 ◦ C was carried out. The selected temperatures correspond to the temperature range of unmanaged waste heat. In the presented solution, heat storage is loaded with water from the cooling systems of industrial equipment to store excess heat and use it at a later time. The results of numerical calculations were used to analyse the velocity and temperature fields in the selected structure of the modular heat storage. A novelty in the presented solution is the use of smaller modular heat storage units that allow any configuration of the heat storage system. This solution makes it possible to create heat storage with the required heat capacity.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":"10 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular heat storage in waste heat recovery installations\",\"authors\":\"Piotr Górszczak, Marcin Rywotycki, Marcin Hojny, Grzegorz Filo\",\"doi\":\"10.24425/ather.2023.147548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the methodology of designing a system for accumulating waste heat from industrial processes. The research aimed to analyse the fluid’s movement in the heat accumulator to unify the temperature field in the volume of water constituting the heat buffer. Using the computer program Ansys Fluent, a series of computational fluid dynamics simulations of the process of charging the heat storage with water at 60 ◦ C, 70 ◦ C, and 80 ◦ C was carried out. The selected temperatures correspond to the temperature range of unmanaged waste heat. In the presented solution, heat storage is loaded with water from the cooling systems of industrial equipment to store excess heat and use it at a later time. The results of numerical calculations were used to analyse the velocity and temperature fields in the selected structure of the modular heat storage. A novelty in the presented solution is the use of smaller modular heat storage units that allow any configuration of the heat storage system. This solution makes it possible to create heat storage with the required heat capacity.\",\"PeriodicalId\":45257,\"journal\":{\"name\":\"Archives of Thermodynamics\",\"volume\":\"10 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ather.2023.147548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2023.147548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种工业过程余热积累系统的设计方法。研究的目的是分析流体在蓄热器中的运动,以统一构成热缓冲的水体积内的温度场。利用Ansys Fluent软件,对60℃、70℃和80℃条件下蓄热器加水过程进行了一系列计算流体力学模拟。所选温度对应于未管理余热的温度范围。在提出的解决方案中,储热器装载了工业设备冷却系统中的水,以储存多余的热量并在以后使用。利用数值计算结果,对所选择的组合式蓄热器结构中的速度场和温度场进行了分析。提出的解决方案的新颖之处在于使用更小的模块化储热单元,允许任何配置的储热系统。这一解决方案使得创造具有所需热容的蓄热成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular heat storage in waste heat recovery installations
The paper presents the methodology of designing a system for accumulating waste heat from industrial processes. The research aimed to analyse the fluid’s movement in the heat accumulator to unify the temperature field in the volume of water constituting the heat buffer. Using the computer program Ansys Fluent, a series of computational fluid dynamics simulations of the process of charging the heat storage with water at 60 ◦ C, 70 ◦ C, and 80 ◦ C was carried out. The selected temperatures correspond to the temperature range of unmanaged waste heat. In the presented solution, heat storage is loaded with water from the cooling systems of industrial equipment to store excess heat and use it at a later time. The results of numerical calculations were used to analyse the velocity and temperature fields in the selected structure of the modular heat storage. A novelty in the presented solution is the use of smaller modular heat storage units that allow any configuration of the heat storage system. This solution makes it possible to create heat storage with the required heat capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Thermodynamics
Archives of Thermodynamics THERMODYNAMICS-
CiteScore
1.80
自引率
22.20%
发文量
0
期刊介绍: The aim of the Archives of Thermodynamics is to disseminate knowledge between scientists and engineers interested in thermodynamics and heat transfer and to provide a forum for original research conducted in Central and Eastern Europe, as well as all over the world. The journal encompass all aspect of the field, ranging from classical thermodynamics, through conduction heat transfer to thermodynamic aspects of multiphase flow. Both theoretical and applied contributions are welcome. Only original papers written in English are consider for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信