G. Q. Xu, C. Q. Li, F. J. Wang, J. F. Ou, Z. Y. Xue, A. Amirfazli
{"title":"PTFE@TiO2/epoxy 超疏水涂层的制备与性能","authors":"G. Q. Xu, C. Q. Li, F. J. Wang, J. F. Ou, Z. Y. Xue, A. Amirfazli","doi":"10.15251/djnb.2023.184.1433","DOIUrl":null,"url":null,"abstract":"The problem of bacterial adhesion has been a challenge in everyday life and industry for decades. In this paper, polytetrafluoroethylene(PTFE) micropowder, titanium dioxide(TiO2) nanopowder, ethyl acetate and epoxy resin were sequentially added to a beaker and stirred well, then the nanoparticles were modified using perfluorooctyltriethoxysilane (POTS), and finally superhydrophobic coatings were fabricated on the surface of an aluminium sheet by spraying process. Characterisation was carried out using scanning electron microscopy and contact angle measurement, and the coating wettability, chemical stability and mechanical stability properties were investigated, and finally the coating was tested for antimicrobial properties. The study suggests that the hydrophobicity of the sample was optimal at a contact angle of 163.3° and a rolling angle of 3.2° when the ratio of PTFE micropowder to nano-TiO2 by mass was 1:4 and the ration between POTS and nanoparticles by mass was 12%. The contact angles were 137.8° and 143.6° after 25 and 32 hours of soaked in an anhydrous solution with a pH of 14 and 1, respectively. Most importantly, it exhibits good antimicrobial properties.","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":"35 13","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and properties of PTFE@TiO2/epoxy superhydrophobic coating\",\"authors\":\"G. Q. Xu, C. Q. Li, F. J. Wang, J. F. Ou, Z. Y. Xue, A. Amirfazli\",\"doi\":\"10.15251/djnb.2023.184.1433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of bacterial adhesion has been a challenge in everyday life and industry for decades. In this paper, polytetrafluoroethylene(PTFE) micropowder, titanium dioxide(TiO2) nanopowder, ethyl acetate and epoxy resin were sequentially added to a beaker and stirred well, then the nanoparticles were modified using perfluorooctyltriethoxysilane (POTS), and finally superhydrophobic coatings were fabricated on the surface of an aluminium sheet by spraying process. Characterisation was carried out using scanning electron microscopy and contact angle measurement, and the coating wettability, chemical stability and mechanical stability properties were investigated, and finally the coating was tested for antimicrobial properties. The study suggests that the hydrophobicity of the sample was optimal at a contact angle of 163.3° and a rolling angle of 3.2° when the ratio of PTFE micropowder to nano-TiO2 by mass was 1:4 and the ration between POTS and nanoparticles by mass was 12%. The contact angles were 137.8° and 143.6° after 25 and 32 hours of soaked in an anhydrous solution with a pH of 14 and 1, respectively. Most importantly, it exhibits good antimicrobial properties.\",\"PeriodicalId\":11233,\"journal\":{\"name\":\"Digest Journal of Nanomaterials and Biostructures\",\"volume\":\"35 13\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest Journal of Nanomaterials and Biostructures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/djnb.2023.184.1433\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/djnb.2023.184.1433","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation and properties of PTFE@TiO2/epoxy superhydrophobic coating
The problem of bacterial adhesion has been a challenge in everyday life and industry for decades. In this paper, polytetrafluoroethylene(PTFE) micropowder, titanium dioxide(TiO2) nanopowder, ethyl acetate and epoxy resin were sequentially added to a beaker and stirred well, then the nanoparticles were modified using perfluorooctyltriethoxysilane (POTS), and finally superhydrophobic coatings were fabricated on the surface of an aluminium sheet by spraying process. Characterisation was carried out using scanning electron microscopy and contact angle measurement, and the coating wettability, chemical stability and mechanical stability properties were investigated, and finally the coating was tested for antimicrobial properties. The study suggests that the hydrophobicity of the sample was optimal at a contact angle of 163.3° and a rolling angle of 3.2° when the ratio of PTFE micropowder to nano-TiO2 by mass was 1:4 and the ration between POTS and nanoparticles by mass was 12%. The contact angles were 137.8° and 143.6° after 25 and 32 hours of soaked in an anhydrous solution with a pH of 14 and 1, respectively. Most importantly, it exhibits good antimicrobial properties.