从 360° 图像中检测城市树木的算法

Gustavo Garcia de Campos, Francisco Assis da Silva, Leandro Luiz de Almeida, A. O. Artero, Ricardo Luís Barbosa, A. Hiraga
{"title":"从 360° 图像中检测城市树木的算法","authors":"Gustavo Garcia de Campos, Francisco Assis da Silva, Leandro Luiz de Almeida, A. O. Artero, Ricardo Luís Barbosa, A. Hiraga","doi":"10.5747/ce.2023.v15.e405","DOIUrl":null,"url":null,"abstract":"Trees are indispensable to human life, they absorb carbon dioxide and release oxygen, protect ecosystems, reduce erosion and help to reduce the environment temperature. The manual identification of trees on public roads requires expense and time for recording and managing the data collected, since urban regions can be very large. We developed in this paper a method for the trees detection in urban areas from a 360 video. A YOLO neural network was trained to detect the trees from frames of the equirectangular video (360 images). We used Computer Vision techniques with the OpenCV library to develop algorithms to segment the regions that fit the detected trees in the rectilinear field of view (gnomonic projection), in order to verify if the trees are on the sidewalks. The results obtained showed around 80% success in detecting trees using YOLO, and an accuracy of 71% in the algorithm that checks if the trees are on the sidewalk.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"16 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALGORITMO PARA A DETECÇÃO DE ÁRVORES URBANAS A PARTIR DE IMAGENS 360\",\"authors\":\"Gustavo Garcia de Campos, Francisco Assis da Silva, Leandro Luiz de Almeida, A. O. Artero, Ricardo Luís Barbosa, A. Hiraga\",\"doi\":\"10.5747/ce.2023.v15.e405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trees are indispensable to human life, they absorb carbon dioxide and release oxygen, protect ecosystems, reduce erosion and help to reduce the environment temperature. The manual identification of trees on public roads requires expense and time for recording and managing the data collected, since urban regions can be very large. We developed in this paper a method for the trees detection in urban areas from a 360 video. A YOLO neural network was trained to detect the trees from frames of the equirectangular video (360 images). We used Computer Vision techniques with the OpenCV library to develop algorithms to segment the regions that fit the detected trees in the rectilinear field of view (gnomonic projection), in order to verify if the trees are on the sidewalks. The results obtained showed around 80% success in detecting trees using YOLO, and an accuracy of 71% in the algorithm that checks if the trees are on the sidewalk.\",\"PeriodicalId\":30414,\"journal\":{\"name\":\"Colloquium Exactarum\",\"volume\":\"16 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Exactarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5747/ce.2023.v15.e405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2023.v15.e405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

树木是人类生活中不可或缺的,它们吸收二氧化碳,释放氧气,保护生态系统,减少侵蚀,帮助降低环境温度。手动识别公共道路上的树木需要花费费用和时间来记录和管理收集到的数据,因为城市区域可能非常大。本文提出了一种基于360度视频的城市树木检测方法。训练YOLO神经网络从等矩形视频(360图像)的帧中检测树木。我们使用计算机视觉技术和OpenCV库来开发算法,以分割符合直线视场(gnomonic projection)中检测到的树木的区域,以验证树木是否在人行道上。结果显示,使用YOLO检测树木的成功率约为80%,检测树木是否在人行道上的准确率为71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ALGORITMO PARA A DETECÇÃO DE ÁRVORES URBANAS A PARTIR DE IMAGENS 360
Trees are indispensable to human life, they absorb carbon dioxide and release oxygen, protect ecosystems, reduce erosion and help to reduce the environment temperature. The manual identification of trees on public roads requires expense and time for recording and managing the data collected, since urban regions can be very large. We developed in this paper a method for the trees detection in urban areas from a 360 video. A YOLO neural network was trained to detect the trees from frames of the equirectangular video (360 images). We used Computer Vision techniques with the OpenCV library to develop algorithms to segment the regions that fit the detected trees in the rectilinear field of view (gnomonic projection), in order to verify if the trees are on the sidewalks. The results obtained showed around 80% success in detecting trees using YOLO, and an accuracy of 71% in the algorithm that checks if the trees are on the sidewalk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信