利用纳米结构吸附剂净化废水中的重金属离子

S. Konyratbekova, Zh. Shopanbek, S. Nurzhanova, A. Baikonurova
{"title":"利用纳米结构吸附剂净化废水中的重金属离子","authors":"S. Konyratbekova, Zh. Shopanbek, S. Nurzhanova, A. Baikonurova","doi":"10.31643/2024/6445.25","DOIUrl":null,"url":null,"abstract":"The activities of industrial enterprises in ferrous and non-ferrous metallurgy and other industries lead to environmental pollution with wastewater containing harmful substances that, even in small quantities, have a rather serious negative impact on human health and the state of the biosphere. There are a large number of natural sorbents used to solve water treatment problems. Among inorganic sorption materials, zeolites are widely used in practice. These natural materials have thermal and radiation stability and high selectivity. The purpose of this article is to study the sorption capacity of zeolites modified with nanostructured rare metals in several ways, with different options for activating the matrix to improve sorption properties with respect to ions of heavy and non-ferrous metals. Based on the experiments conducted, it was proven that zeolites modified with vanadium and titanium nanocompounds are highly effective in removing heavy metal ions from wastewater. The resulting composition on a zeolite matrix creates a highly dispersed solid phase of nanoparticles in the form of a sol-gel. Such systems have an excess of energy, which leads to increased reactivity and adsorbing properties. It is obvious that the activation of zeolites makes it possible to obtain a wider range of active centers of different nature. This determines the varied use of zeolites in the technological system for treating wastewater from heavy and non-ferrous metal ions, which will make it possible to achieve MPC standards.","PeriodicalId":17896,"journal":{"name":"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu","volume":"6 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purification of wastewater from heavy metal ions using nanostructured adsorbents\",\"authors\":\"S. Konyratbekova, Zh. Shopanbek, S. Nurzhanova, A. Baikonurova\",\"doi\":\"10.31643/2024/6445.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The activities of industrial enterprises in ferrous and non-ferrous metallurgy and other industries lead to environmental pollution with wastewater containing harmful substances that, even in small quantities, have a rather serious negative impact on human health and the state of the biosphere. There are a large number of natural sorbents used to solve water treatment problems. Among inorganic sorption materials, zeolites are widely used in practice. These natural materials have thermal and radiation stability and high selectivity. The purpose of this article is to study the sorption capacity of zeolites modified with nanostructured rare metals in several ways, with different options for activating the matrix to improve sorption properties with respect to ions of heavy and non-ferrous metals. Based on the experiments conducted, it was proven that zeolites modified with vanadium and titanium nanocompounds are highly effective in removing heavy metal ions from wastewater. The resulting composition on a zeolite matrix creates a highly dispersed solid phase of nanoparticles in the form of a sol-gel. Such systems have an excess of energy, which leads to increased reactivity and adsorbing properties. It is obvious that the activation of zeolites makes it possible to obtain a wider range of active centers of different nature. This determines the varied use of zeolites in the technological system for treating wastewater from heavy and non-ferrous metal ions, which will make it possible to achieve MPC standards.\",\"PeriodicalId\":17896,\"journal\":{\"name\":\"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31643/2024/6445.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31643/2024/6445.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

黑色金属和有色金属冶金及其他工业企业的活动导致含有有害物质的废水污染环境,即使是少量的有害物质,也会对人类健康和生物圈状况产生相当严重的负面影响。有大量的天然吸附剂用于解决水处理问题。沸石是无机吸附材料中应用最广泛的一种。这些天然材料具有热和辐射稳定性和高选择性。本文的目的是研究纳米结构稀有金属改性沸石的吸附能力,通过不同的方法来激活基质,以提高对重金属和有色金属离子的吸附性能。实验结果表明,纳米钒钛改性沸石对废水中的重金属离子具有较好的去除效果。沸石基质上的合成物以溶胶-凝胶的形式形成高度分散的纳米颗粒固相。这样的系统有多余的能量,这导致增加的反应性和吸附性能。显然,沸石的活化可以获得更大范围的不同性质的活性中心。这决定了沸石在处理重金属和有色金属离子废水的技术系统中的各种用途,这将有可能达到MPC标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Purification of wastewater from heavy metal ions using nanostructured adsorbents
The activities of industrial enterprises in ferrous and non-ferrous metallurgy and other industries lead to environmental pollution with wastewater containing harmful substances that, even in small quantities, have a rather serious negative impact on human health and the state of the biosphere. There are a large number of natural sorbents used to solve water treatment problems. Among inorganic sorption materials, zeolites are widely used in practice. These natural materials have thermal and radiation stability and high selectivity. The purpose of this article is to study the sorption capacity of zeolites modified with nanostructured rare metals in several ways, with different options for activating the matrix to improve sorption properties with respect to ions of heavy and non-ferrous metals. Based on the experiments conducted, it was proven that zeolites modified with vanadium and titanium nanocompounds are highly effective in removing heavy metal ions from wastewater. The resulting composition on a zeolite matrix creates a highly dispersed solid phase of nanoparticles in the form of a sol-gel. Such systems have an excess of energy, which leads to increased reactivity and adsorbing properties. It is obvious that the activation of zeolites makes it possible to obtain a wider range of active centers of different nature. This determines the varied use of zeolites in the technological system for treating wastewater from heavy and non-ferrous metal ions, which will make it possible to achieve MPC standards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信