非硅原子 AlCrMnFeNi 高熵合金在低温和高温下的变形机理研究

Ahmed W. Abdelghany, M. Jaskari, A. Hamada, M. Gepreel, A. Järvenpää
{"title":"非硅原子 AlCrMnFeNi 高熵合金在低温和高温下的变形机理研究","authors":"Ahmed W. Abdelghany, M. Jaskari, A. Hamada, M. Gepreel, A. Järvenpää","doi":"10.4028/p-qwtrs0","DOIUrl":null,"url":null,"abstract":"High-entropy alloys (HEAs) have led to breakthroughs in materials science due to their superior properties and the challenge of achieving the high strength and high ductility trade-off. Microstructural evolution during cold and warm compression tests of the single-phase Al8Cr12Mn25Fe35Ni20 high entropy alloy (Fe-HEA) is investigated in the present work. The current study assesses the effect of temperature on the mechanical properties and deformation mechanism of the face-centered cubic structure Fe-HEA. The arc-melted ingot is homogenized at 1473 K and then directly hot-rolled to break the cast structure of the alloy prior to testing procedures. Fe-HEA is tested through uniaxial compressive testing at three different selected temperatures: 293, 473, and 673 K utilizing a Gleeble thermo-mechanical simulator at a strain rate of 0.001 s-1. The compressive behavior at 673 K showed a higher strain hardening exponent when compared to 293 and 473 K. The deformed microstructural features of the compressed and quenched specimens, deformation mechanism, and phase revolution are investigated with X-ray diffraction (XRD) and electron backscattered diffraction (EBSD). Dislocation densities for the deformed conditions were estimated to be 4.11 × 1014 and 5.39 × 1014 m-2 for the 473 and 673 K deformed conditions, respectively. At a deformation temperature of 673 K, B2 precipitation is observed at the high-angle grain boundaries.","PeriodicalId":21754,"journal":{"name":"Solid State Phenomena","volume":"77 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Deformation Mechanism of a Nonequiatomic AlCrMnFeNi High-Entropy Alloy at Cold and Warm Temperatures\",\"authors\":\"Ahmed W. Abdelghany, M. Jaskari, A. Hamada, M. Gepreel, A. Järvenpää\",\"doi\":\"10.4028/p-qwtrs0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-entropy alloys (HEAs) have led to breakthroughs in materials science due to their superior properties and the challenge of achieving the high strength and high ductility trade-off. Microstructural evolution during cold and warm compression tests of the single-phase Al8Cr12Mn25Fe35Ni20 high entropy alloy (Fe-HEA) is investigated in the present work. The current study assesses the effect of temperature on the mechanical properties and deformation mechanism of the face-centered cubic structure Fe-HEA. The arc-melted ingot is homogenized at 1473 K and then directly hot-rolled to break the cast structure of the alloy prior to testing procedures. Fe-HEA is tested through uniaxial compressive testing at three different selected temperatures: 293, 473, and 673 K utilizing a Gleeble thermo-mechanical simulator at a strain rate of 0.001 s-1. The compressive behavior at 673 K showed a higher strain hardening exponent when compared to 293 and 473 K. The deformed microstructural features of the compressed and quenched specimens, deformation mechanism, and phase revolution are investigated with X-ray diffraction (XRD) and electron backscattered diffraction (EBSD). Dislocation densities for the deformed conditions were estimated to be 4.11 × 1014 and 5.39 × 1014 m-2 for the 473 and 673 K deformed conditions, respectively. At a deformation temperature of 673 K, B2 precipitation is observed at the high-angle grain boundaries.\",\"PeriodicalId\":21754,\"journal\":{\"name\":\"Solid State Phenomena\",\"volume\":\"77 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-qwtrs0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-qwtrs0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金(HEAs)由于其优越的性能和实现高强度和高塑性平衡的挑战,导致了材料科学的突破。本文研究了单相Al8Cr12Mn25Fe35Ni20高熵合金(Fe-HEA)在冷热压缩试验中的组织演变。研究了温度对面心立方结构Fe-HEA的力学性能和变形机理的影响。电弧熔化的铸锭在1473 K下均匀化,然后在测试程序之前直接热轧以打破合金的铸造组织。Fe-HEA通过单轴压缩测试,在三个不同的选择温度:293,473和673 K,利用Gleeble热机械模拟器,应变速率为0.001 s-1。与293和473 K相比,673 K的压缩行为表现出更高的应变硬化指数。利用x射线衍射(XRD)和电子背散射衍射(EBSD)研究了压缩和淬火试样的变形组织特征、变形机理和相转。在473 K和673 K变形条件下,位错密度分别为4.11 × 1014和5.39 × 1014 m-2。当变形温度为673 K时,在高角度晶界处有B2析出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the Deformation Mechanism of a Nonequiatomic AlCrMnFeNi High-Entropy Alloy at Cold and Warm Temperatures
High-entropy alloys (HEAs) have led to breakthroughs in materials science due to their superior properties and the challenge of achieving the high strength and high ductility trade-off. Microstructural evolution during cold and warm compression tests of the single-phase Al8Cr12Mn25Fe35Ni20 high entropy alloy (Fe-HEA) is investigated in the present work. The current study assesses the effect of temperature on the mechanical properties and deformation mechanism of the face-centered cubic structure Fe-HEA. The arc-melted ingot is homogenized at 1473 K and then directly hot-rolled to break the cast structure of the alloy prior to testing procedures. Fe-HEA is tested through uniaxial compressive testing at three different selected temperatures: 293, 473, and 673 K utilizing a Gleeble thermo-mechanical simulator at a strain rate of 0.001 s-1. The compressive behavior at 673 K showed a higher strain hardening exponent when compared to 293 and 473 K. The deformed microstructural features of the compressed and quenched specimens, deformation mechanism, and phase revolution are investigated with X-ray diffraction (XRD) and electron backscattered diffraction (EBSD). Dislocation densities for the deformed conditions were estimated to be 4.11 × 1014 and 5.39 × 1014 m-2 for the 473 and 673 K deformed conditions, respectively. At a deformation temperature of 673 K, B2 precipitation is observed at the high-angle grain boundaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信