Robin L. Lee, Brendon A. Bradley, E. Manea, Jesse A. Hutchinson, Sanjay S. Bora
{"title":"为 2022 年新西兰国家地震灾害模型修订评估经验地动模型","authors":"Robin L. Lee, Brendon A. Bradley, E. Manea, Jesse A. Hutchinson, Sanjay S. Bora","doi":"10.1785/0120230180","DOIUrl":null,"url":null,"abstract":"\n This article presents an evaluation of empirical ground-motion models (GMMs) for active shallow crustal, subduction interface, and subduction slab earthquakes using a recently developed New Zealand (NZ) ground-motion database for the 2022 New Zealand National Seismic Hazard Model revision. This study considers both NZ-specific and global models, which require evaluation to inform of their applicability in an NZ context. A quantitative comparison between the models is conducted based on intensity measure residuals and a mixed-effects regression framework. The results are subsequently investigated to assess how the models are performing in terms of overall accuracy and precision, as well as to identify the presence of any biases in the model predictions when applied to NZ data. Many models showed reasonable performance and could be considered appropriate for inclusion within suites of models to properly represent ground-motion predictions and epistemic uncertainty. In general, the recent models that are NZ-specific or developed on large international databases performed the best. This evaluation of models helped inform suitable GMMs for the ground-motion characterization model logic tree. In addition, spatial trends in systematic site-to-site residuals to the west of the Taupō Volcanic Zone demonstrated the need for backarc attenuation modifications for slab earthquakes.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"98 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of Empirical Ground-Motion Models for the 2022 New Zealand National Seismic Hazard Model Revision\",\"authors\":\"Robin L. Lee, Brendon A. Bradley, E. Manea, Jesse A. Hutchinson, Sanjay S. Bora\",\"doi\":\"10.1785/0120230180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article presents an evaluation of empirical ground-motion models (GMMs) for active shallow crustal, subduction interface, and subduction slab earthquakes using a recently developed New Zealand (NZ) ground-motion database for the 2022 New Zealand National Seismic Hazard Model revision. This study considers both NZ-specific and global models, which require evaluation to inform of their applicability in an NZ context. A quantitative comparison between the models is conducted based on intensity measure residuals and a mixed-effects regression framework. The results are subsequently investigated to assess how the models are performing in terms of overall accuracy and precision, as well as to identify the presence of any biases in the model predictions when applied to NZ data. Many models showed reasonable performance and could be considered appropriate for inclusion within suites of models to properly represent ground-motion predictions and epistemic uncertainty. In general, the recent models that are NZ-specific or developed on large international databases performed the best. This evaluation of models helped inform suitable GMMs for the ground-motion characterization model logic tree. In addition, spatial trends in systematic site-to-site residuals to the west of the Taupō Volcanic Zone demonstrated the need for backarc attenuation modifications for slab earthquakes.\",\"PeriodicalId\":9444,\"journal\":{\"name\":\"Bulletin of the Seismological Society of America\",\"volume\":\"98 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Seismological Society of America\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1785/0120230180\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120230180","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Evaluation of Empirical Ground-Motion Models for the 2022 New Zealand National Seismic Hazard Model Revision
This article presents an evaluation of empirical ground-motion models (GMMs) for active shallow crustal, subduction interface, and subduction slab earthquakes using a recently developed New Zealand (NZ) ground-motion database for the 2022 New Zealand National Seismic Hazard Model revision. This study considers both NZ-specific and global models, which require evaluation to inform of their applicability in an NZ context. A quantitative comparison between the models is conducted based on intensity measure residuals and a mixed-effects regression framework. The results are subsequently investigated to assess how the models are performing in terms of overall accuracy and precision, as well as to identify the presence of any biases in the model predictions when applied to NZ data. Many models showed reasonable performance and could be considered appropriate for inclusion within suites of models to properly represent ground-motion predictions and epistemic uncertainty. In general, the recent models that are NZ-specific or developed on large international databases performed the best. This evaluation of models helped inform suitable GMMs for the ground-motion characterization model logic tree. In addition, spatial trends in systematic site-to-site residuals to the west of the Taupō Volcanic Zone demonstrated the need for backarc attenuation modifications for slab earthquakes.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.