模糊成员数对求解整微分方程数值方法收敛性的影响比较

T.L. Yookesh, Ch. Subba Reddy, Ch. Sivaparvathi, T.T. Raman, R. Chandramohan
{"title":"模糊成员数对求解整微分方程数值方法收敛性的影响比较","authors":"T.L. Yookesh, Ch. Subba Reddy, Ch. Sivaparvathi, T.T. Raman, R. Chandramohan","doi":"10.15379/ijmst.v10i2.3250","DOIUrl":null,"url":null,"abstract":"In this article examines the convergences stability of Variational Iteration Method (VIM) for solving Fuzzy Volterra Integro-Differential Equations (FVIDE) of second kind under the Seikkala derivative [13]. The advantage of the proposed method in this study compared with Adomian decomposition Method (ADM). The undefined variables are represented by membership values in trapezoids and triangles. The results of the two methods are compared to demonstrate the efficacy of fuzzy numbers in terms of increasing membership values.","PeriodicalId":499708,"journal":{"name":"International journal of membrane science and technology","volume":"120 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Fuzzy Membership Numbers on the Convergence of Numerical Approaches to Solving Integro-Differential Equations\",\"authors\":\"T.L. Yookesh, Ch. Subba Reddy, Ch. Sivaparvathi, T.T. Raman, R. Chandramohan\",\"doi\":\"10.15379/ijmst.v10i2.3250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article examines the convergences stability of Variational Iteration Method (VIM) for solving Fuzzy Volterra Integro-Differential Equations (FVIDE) of second kind under the Seikkala derivative [13]. The advantage of the proposed method in this study compared with Adomian decomposition Method (ADM). The undefined variables are represented by membership values in trapezoids and triangles. The results of the two methods are compared to demonstrate the efficacy of fuzzy numbers in terms of increasing membership values.\",\"PeriodicalId\":499708,\"journal\":{\"name\":\"International journal of membrane science and technology\",\"volume\":\"120 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of membrane science and technology\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.15379/ijmst.v10i2.3250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of membrane science and technology","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.15379/ijmst.v10i2.3250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在Seikkala导数下求解第二类模糊Volterra积分微分方程(FVIDE)的变分迭代法(VIM)的收敛稳定性[13]。与Adomian分解法(ADM)相比,本研究提出的方法具有优势。未定义变量由梯形和三角形中的成员值表示。比较了两种方法的结果,证明了模糊数在提高隶属度值方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Fuzzy Membership Numbers on the Convergence of Numerical Approaches to Solving Integro-Differential Equations
In this article examines the convergences stability of Variational Iteration Method (VIM) for solving Fuzzy Volterra Integro-Differential Equations (FVIDE) of second kind under the Seikkala derivative [13]. The advantage of the proposed method in this study compared with Adomian decomposition Method (ADM). The undefined variables are represented by membership values in trapezoids and triangles. The results of the two methods are compared to demonstrate the efficacy of fuzzy numbers in terms of increasing membership values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信