H. Rehman, T. Kagoshima, N. Takahata, Yuji Sano, F. Barou, D. Mainprice, Hiroshi Yamamoto
{"title":"电子反向散射衍射分析与 NanoSIMS U-Pb 同位素数据相结合,揭示了锆石的晶粒内塑性变形及其对 U-Pb 年龄的影响:来自巴基斯坦喜马拉雅斜长岩的实例","authors":"H. Rehman, T. Kagoshima, N. Takahata, Yuji Sano, F. Barou, D. Mainprice, Hiroshi Yamamoto","doi":"10.5194/ejm-35-1079-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Zircon grains preserve records of crystallization, growth, and/or deformation that can be envisaged from their internal structures and through the U–Pb isotope analysis. Electron backscatter diffraction (EBSD) is a non-destructive method for visualizing undeformed domains to differentiate them from those that are plastically deformed. In this study, we report EBSD analyses conducted on zircon grains, in thin sections with available textural information, from Himalayan eclogites. The studied eclogite samples show no petrographic evidence of shearing or mylonitization. However, several zircon grains preserve plastically deformed domains. These deformed domains display several degrees of misorientation relative to the undeformed domain and yielded geologically reset ages when analysed for U–Pb isotope ratios using nanoscale secondary ion mass spectrometry (NanoSIMS), in contrast to most undeformed domains which retained the protolith age. The degree of resetting is positively correlated with the extent of misorientation. These pieces of evidence indicate that plastic deformation in zircon grains, equilibrated at higher pressure–temperature conditions, affected the primary geochemical and geochronological records. Based on these observations, we assume that not only regional shearing/mylonitization in metamorphic rocks affects the geochemical records, but also that zircon grains in apparently unsheared high-grade metamorphic rocks behave plastically. The micro-scale intra-grain plastically deformed domains can easily be identified through EBSD analysis in the form of crystallographic misorientations. To extract meaningful geochronological results, it is necessary to identify undisturbed domains in zircon grains before applying any destructive analytical method.\n","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":"12 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron backscatter diffraction analysis combined with NanoSIMS U–Pb isotope data reveal intra-grain plastic deformation in zircon and its effects on U–Pb age: examples from Himalayan eclogites, Pakistan\",\"authors\":\"H. Rehman, T. Kagoshima, N. Takahata, Yuji Sano, F. Barou, D. Mainprice, Hiroshi Yamamoto\",\"doi\":\"10.5194/ejm-35-1079-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Zircon grains preserve records of crystallization, growth, and/or deformation that can be envisaged from their internal structures and through the U–Pb isotope analysis. Electron backscatter diffraction (EBSD) is a non-destructive method for visualizing undeformed domains to differentiate them from those that are plastically deformed. In this study, we report EBSD analyses conducted on zircon grains, in thin sections with available textural information, from Himalayan eclogites. The studied eclogite samples show no petrographic evidence of shearing or mylonitization. However, several zircon grains preserve plastically deformed domains. These deformed domains display several degrees of misorientation relative to the undeformed domain and yielded geologically reset ages when analysed for U–Pb isotope ratios using nanoscale secondary ion mass spectrometry (NanoSIMS), in contrast to most undeformed domains which retained the protolith age. The degree of resetting is positively correlated with the extent of misorientation. These pieces of evidence indicate that plastic deformation in zircon grains, equilibrated at higher pressure–temperature conditions, affected the primary geochemical and geochronological records. Based on these observations, we assume that not only regional shearing/mylonitization in metamorphic rocks affects the geochemical records, but also that zircon grains in apparently unsheared high-grade metamorphic rocks behave plastically. The micro-scale intra-grain plastically deformed domains can easily be identified through EBSD analysis in the form of crystallographic misorientations. To extract meaningful geochronological results, it is necessary to identify undisturbed domains in zircon grains before applying any destructive analytical method.\\n\",\"PeriodicalId\":11971,\"journal\":{\"name\":\"European Journal of Mineralogy\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mineralogy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/ejm-35-1079-2023\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINERALOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mineralogy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/ejm-35-1079-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINERALOGY","Score":null,"Total":0}
Electron backscatter diffraction analysis combined with NanoSIMS U–Pb isotope data reveal intra-grain plastic deformation in zircon and its effects on U–Pb age: examples from Himalayan eclogites, Pakistan
Abstract. Zircon grains preserve records of crystallization, growth, and/or deformation that can be envisaged from their internal structures and through the U–Pb isotope analysis. Electron backscatter diffraction (EBSD) is a non-destructive method for visualizing undeformed domains to differentiate them from those that are plastically deformed. In this study, we report EBSD analyses conducted on zircon grains, in thin sections with available textural information, from Himalayan eclogites. The studied eclogite samples show no petrographic evidence of shearing or mylonitization. However, several zircon grains preserve plastically deformed domains. These deformed domains display several degrees of misorientation relative to the undeformed domain and yielded geologically reset ages when analysed for U–Pb isotope ratios using nanoscale secondary ion mass spectrometry (NanoSIMS), in contrast to most undeformed domains which retained the protolith age. The degree of resetting is positively correlated with the extent of misorientation. These pieces of evidence indicate that plastic deformation in zircon grains, equilibrated at higher pressure–temperature conditions, affected the primary geochemical and geochronological records. Based on these observations, we assume that not only regional shearing/mylonitization in metamorphic rocks affects the geochemical records, but also that zircon grains in apparently unsheared high-grade metamorphic rocks behave plastically. The micro-scale intra-grain plastically deformed domains can easily be identified through EBSD analysis in the form of crystallographic misorientations. To extract meaningful geochronological results, it is necessary to identify undisturbed domains in zircon grains before applying any destructive analytical method.
期刊介绍:
EJM was founded to reach a large audience on an international scale and also for achieving closer cooperation of European countries in the publication of scientific results. The founding societies have set themselves the task of publishing a journal of the highest standard open to all scientists performing mineralogical research in the widest sense of the term, all over the world. Contributions will therefore be published primarily in English.
EJM publishes original papers, review articles and letters dealing with the mineralogical sciences s.l., primarily mineralogy, petrology, geochemistry, crystallography and ore deposits, but also biomineralogy, environmental, applied and technical mineralogy. Nevertheless, papers in any related field, including cultural heritage, will be considered.