{"title":"了解激光焊接隐蔽 T 形关节时的同轴光学相干断层扫描信号","authors":"T. Mattulat","doi":"10.2351/7.0001157","DOIUrl":null,"url":null,"abstract":"In the case of “hidden” T-joints, the nonvisible web sheet is welded through the face sheet. Positioning tolerances and movement due to the distortion of the web sheet represent the main challenges to maintain on track during laser beam welding. This study investigated the assumption that keyhole monitoring based on optical coherence tomography (OCT) could be utilized for seam tracking by detecting critical misalignments between the laser beam and the web sheet position. It hereby analyzed whether an emerging misalignment between the laser beam and the web sheet could be discerned in the OCT data before the laser beam misses the web sheet and penetrated only the face sheet. This prediction represents a key requirement for the industrial use of this approach. To this end, this study investigated the welding of hidden T-joints with angular and parallel offsets of the laser path relative to the web sheet centerline while recording with OCT. The interface zone between the web and face sheets was recorded by a high-speed camera to detect the transmission of laser radiation through a lower keyhole opening. It was shown that a lower keyhole opening, in combination with transmitted radiation, was advantageous for the reliable detection of an emerging misalignment. This lower keyhole opening can occur lateral to the web sheet prior to a misalignment, therefore enabling a prediction of spot misalignments via OCT. The welding parameter dependent maximum distance of the laser spot edge to the web sheet edge at detection was 0.1 mm in this study.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"19 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the coaxial optical coherence tomography signal during the laser welding of hidden T-joints\",\"authors\":\"T. Mattulat\",\"doi\":\"10.2351/7.0001157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the case of “hidden” T-joints, the nonvisible web sheet is welded through the face sheet. Positioning tolerances and movement due to the distortion of the web sheet represent the main challenges to maintain on track during laser beam welding. This study investigated the assumption that keyhole monitoring based on optical coherence tomography (OCT) could be utilized for seam tracking by detecting critical misalignments between the laser beam and the web sheet position. It hereby analyzed whether an emerging misalignment between the laser beam and the web sheet could be discerned in the OCT data before the laser beam misses the web sheet and penetrated only the face sheet. This prediction represents a key requirement for the industrial use of this approach. To this end, this study investigated the welding of hidden T-joints with angular and parallel offsets of the laser path relative to the web sheet centerline while recording with OCT. The interface zone between the web and face sheets was recorded by a high-speed camera to detect the transmission of laser radiation through a lower keyhole opening. It was shown that a lower keyhole opening, in combination with transmitted radiation, was advantageous for the reliable detection of an emerging misalignment. This lower keyhole opening can occur lateral to the web sheet prior to a misalignment, therefore enabling a prediction of spot misalignments via OCT. The welding parameter dependent maximum distance of the laser spot edge to the web sheet edge at detection was 0.1 mm in this study.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":\"19 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001157\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001157","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Understanding the coaxial optical coherence tomography signal during the laser welding of hidden T-joints
In the case of “hidden” T-joints, the nonvisible web sheet is welded through the face sheet. Positioning tolerances and movement due to the distortion of the web sheet represent the main challenges to maintain on track during laser beam welding. This study investigated the assumption that keyhole monitoring based on optical coherence tomography (OCT) could be utilized for seam tracking by detecting critical misalignments between the laser beam and the web sheet position. It hereby analyzed whether an emerging misalignment between the laser beam and the web sheet could be discerned in the OCT data before the laser beam misses the web sheet and penetrated only the face sheet. This prediction represents a key requirement for the industrial use of this approach. To this end, this study investigated the welding of hidden T-joints with angular and parallel offsets of the laser path relative to the web sheet centerline while recording with OCT. The interface zone between the web and face sheets was recorded by a high-speed camera to detect the transmission of laser radiation through a lower keyhole opening. It was shown that a lower keyhole opening, in combination with transmitted radiation, was advantageous for the reliable detection of an emerging misalignment. This lower keyhole opening can occur lateral to the web sheet prior to a misalignment, therefore enabling a prediction of spot misalignments via OCT. The welding parameter dependent maximum distance of the laser spot edge to the web sheet edge at detection was 0.1 mm in this study.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.