{"title":"通过阿多米亚多项式改进有限差分技术求解德林菲尔德-索科洛夫-威尔逊耦合系统","authors":"Israa Th. Younis, Ekhlass S. Al-Rawi","doi":"10.1155/2023/6916596","DOIUrl":null,"url":null,"abstract":"This study presents a new algorithm for effectively solving the nonlinear coupled Drinfeld’s–Sokolov–Wilson (DSW) system using a hybrid explicit finite difference technique with the Adomian polynomial (EFD-AP). The suggested approach addresses the problem of accurately solving the DSW system. Numerical results are obtained by comparing the exact solution with absolute and mean square errors using a test problem to assess the EFD-AP accuracy against the exact solution and the conventional explicit finite difference (EFD) method. The results exhibit excellent agreement between the approximate and exact solutions at different time values, and the results showed that the proposed EFD-AP method achieves superior accuracy and efficiency compared to the EFD method, which makes it a promising method for solving nonlinear partial differential systems of higher order.","PeriodicalId":39893,"journal":{"name":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Finite Difference Technique via Adomian Polynomial to Solve the Coupled Drinfeld’s–Sokolov–Wilson System\",\"authors\":\"Israa Th. Younis, Ekhlass S. Al-Rawi\",\"doi\":\"10.1155/2023/6916596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a new algorithm for effectively solving the nonlinear coupled Drinfeld’s–Sokolov–Wilson (DSW) system using a hybrid explicit finite difference technique with the Adomian polynomial (EFD-AP). The suggested approach addresses the problem of accurately solving the DSW system. Numerical results are obtained by comparing the exact solution with absolute and mean square errors using a test problem to assess the EFD-AP accuracy against the exact solution and the conventional explicit finite difference (EFD) method. The results exhibit excellent agreement between the approximate and exact solutions at different time values, and the results showed that the proposed EFD-AP method achieves superior accuracy and efficiency compared to the EFD method, which makes it a promising method for solving nonlinear partial differential systems of higher order.\",\"PeriodicalId\":39893,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6916596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6916596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种利用Adomian多项式混合显式有限差分技术有效求解非线性耦合Drinfeld - sokolov - wilson (DSW)系统的新算法。该方法解决了DSW系统的精确求解问题。通过一个测试问题,将精确解与绝对误差和均方误差进行比较,以评估EFD- ap与精确解和传统显式有限差分(EFD)方法的精度,从而获得数值结果。结果表明,该方法在求解高阶非线性偏微分系统时具有较好的精度和效率,是一种很有前途的求解方法。
Improved Finite Difference Technique via Adomian Polynomial to Solve the Coupled Drinfeld’s–Sokolov–Wilson System
This study presents a new algorithm for effectively solving the nonlinear coupled Drinfeld’s–Sokolov–Wilson (DSW) system using a hybrid explicit finite difference technique with the Adomian polynomial (EFD-AP). The suggested approach addresses the problem of accurately solving the DSW system. Numerical results are obtained by comparing the exact solution with absolute and mean square errors using a test problem to assess the EFD-AP accuracy against the exact solution and the conventional explicit finite difference (EFD) method. The results exhibit excellent agreement between the approximate and exact solutions at different time values, and the results showed that the proposed EFD-AP method achieves superior accuracy and efficiency compared to the EFD method, which makes it a promising method for solving nonlinear partial differential systems of higher order.
期刊介绍:
The International Journal of Mathematics and Mathematical Sciences is a refereed math journal devoted to publication of original research articles, research notes, and review articles, with emphasis on contributions to unsolved problems and open questions in mathematics and mathematical sciences. All areas listed on the cover of Mathematical Reviews, such as pure and applied mathematics, mathematical physics, theoretical mechanics, probability and mathematical statistics, and theoretical biology, are included within the scope of the International Journal of Mathematics and Mathematical Sciences.