泰国第一代和第二代 SBAS 信号的全球导航卫星系统定位精度性能评估

IF 1.2 Q4 REMOTE SENSING
Phunsap Thari, Thayathip Thongtan, C. Satirapod
{"title":"泰国第一代和第二代 SBAS 信号的全球导航卫星系统定位精度性能评估","authors":"Phunsap Thari, Thayathip Thongtan, C. Satirapod","doi":"10.1515/jag-2023-0082","DOIUrl":null,"url":null,"abstract":"Abstract This research evaluates the performance of the first and second-generation satellite-based augmentation system (SBAS) GAGAN and BDSBAS services in Thailand. The study initially analyses GNSS observations from 40 local continuously operating reference stations (CORS) over the past 12 months in 2022, providing initial horizontal and vertical accuracies at 2.03 and 3.66 m respectively with the single point positioning (SPP) mode. The positioning accuracies are 2.27 m horizontally and 2.54 m vertically as of GAGAN, while 2.94 m horizontally and 3.90 m vertically as of BDSBAS with the first-generation system. Since the 1st generation SBAS performance is affected by the ionosphere, especially in the equatorial and auroral regions, the ionosphere-free combination is applied in the SPP algorithm as well as the 2nd generation SBAS with the Dual-Frequency Multi-Constellation (DFMC) capable receivers for BDSBAS only. The SPP accuracies are 1.51 m horizontally and 3.26 m vertically, where the BDSBAS results are 2.16 m horizontally and 4.28 m vertically. Demonstrated results show that the positioning accuracy cannot be improved significantly when applying the 1st generation GAGAN and BDSBAS systems and the 2nd generation BDSBAS system in Thailand due to the low number of common satellites available, especially when using the SBAS outside their ground tracking network; therefore, it is expected to apply the GNSS observation and computed satellite error correction from the regional ground tracking network to enhance the performance of the 2nd generation SBAS. The positioning accuracy result could be achieved at sub-metre level, which will greatly benefit high-accuracy applications such as air, land, and sea navigation in the region.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GNSS positioning accuracy performance assessments on 1st and 2nd generation SBAS signals in Thailand\",\"authors\":\"Phunsap Thari, Thayathip Thongtan, C. Satirapod\",\"doi\":\"10.1515/jag-2023-0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This research evaluates the performance of the first and second-generation satellite-based augmentation system (SBAS) GAGAN and BDSBAS services in Thailand. The study initially analyses GNSS observations from 40 local continuously operating reference stations (CORS) over the past 12 months in 2022, providing initial horizontal and vertical accuracies at 2.03 and 3.66 m respectively with the single point positioning (SPP) mode. The positioning accuracies are 2.27 m horizontally and 2.54 m vertically as of GAGAN, while 2.94 m horizontally and 3.90 m vertically as of BDSBAS with the first-generation system. Since the 1st generation SBAS performance is affected by the ionosphere, especially in the equatorial and auroral regions, the ionosphere-free combination is applied in the SPP algorithm as well as the 2nd generation SBAS with the Dual-Frequency Multi-Constellation (DFMC) capable receivers for BDSBAS only. The SPP accuracies are 1.51 m horizontally and 3.26 m vertically, where the BDSBAS results are 2.16 m horizontally and 4.28 m vertically. Demonstrated results show that the positioning accuracy cannot be improved significantly when applying the 1st generation GAGAN and BDSBAS systems and the 2nd generation BDSBAS system in Thailand due to the low number of common satellites available, especially when using the SBAS outside their ground tracking network; therefore, it is expected to apply the GNSS observation and computed satellite error correction from the regional ground tracking network to enhance the performance of the 2nd generation SBAS. The positioning accuracy result could be achieved at sub-metre level, which will greatly benefit high-accuracy applications such as air, land, and sea navigation in the region.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2023-0082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究评估了泰国第一代和第二代星基增强系统(SBAS) GAGAN和BDSBAS服务的性能。该研究首先分析了40个当地连续运行参考站(CORS)在2022年过去12个月的GNSS观测数据,在单点定位(SPP)模式下,初始水平和垂直精度分别为2.03和3.66 m。第一代系统GAGAN的水平定位精度为2.27 m,垂直定位精度为2.54 m, BDSBAS的水平定位精度为2.94 m,垂直定位精度为3.90 m。由于第一代SBAS的性能受电离层的影响,特别是在赤道和极光区域,SPP算法采用无电离层组合,而第二代SBAS采用双频多星座(Dual-Frequency Multi-Constellation, DFMC)接收机,仅用于BDSBAS。SPP的水平精度为1.51 m,垂直精度为3.26 m,而BDSBAS的水平精度为2.16 m,垂直精度为4.28 m。结果表明,在泰国使用第一代GAGAN和BDSBAS系统以及第二代BDSBAS系统时,由于可用的公共卫星数量较少,特别是在使用其地面跟踪网络之外的SBAS时,定位精度不能得到显著提高;因此,预计将应用区域地面跟踪网的GNSS观测和计算卫星误差修正来提高第二代SBAS的性能。该定位精度结果可达到亚米级,将极大地有利于该地区的空中、陆地和海上导航等高精度应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GNSS positioning accuracy performance assessments on 1st and 2nd generation SBAS signals in Thailand
Abstract This research evaluates the performance of the first and second-generation satellite-based augmentation system (SBAS) GAGAN and BDSBAS services in Thailand. The study initially analyses GNSS observations from 40 local continuously operating reference stations (CORS) over the past 12 months in 2022, providing initial horizontal and vertical accuracies at 2.03 and 3.66 m respectively with the single point positioning (SPP) mode. The positioning accuracies are 2.27 m horizontally and 2.54 m vertically as of GAGAN, while 2.94 m horizontally and 3.90 m vertically as of BDSBAS with the first-generation system. Since the 1st generation SBAS performance is affected by the ionosphere, especially in the equatorial and auroral regions, the ionosphere-free combination is applied in the SPP algorithm as well as the 2nd generation SBAS with the Dual-Frequency Multi-Constellation (DFMC) capable receivers for BDSBAS only. The SPP accuracies are 1.51 m horizontally and 3.26 m vertically, where the BDSBAS results are 2.16 m horizontally and 4.28 m vertically. Demonstrated results show that the positioning accuracy cannot be improved significantly when applying the 1st generation GAGAN and BDSBAS systems and the 2nd generation BDSBAS system in Thailand due to the low number of common satellites available, especially when using the SBAS outside their ground tracking network; therefore, it is expected to apply the GNSS observation and computed satellite error correction from the regional ground tracking network to enhance the performance of the 2nd generation SBAS. The positioning accuracy result could be achieved at sub-metre level, which will greatly benefit high-accuracy applications such as air, land, and sea navigation in the region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信