{"title":"应用于斜压下 AAC 砌块墙体的商用表面加固系统的效率评估","authors":"Marta Kałuża","doi":"10.32047/cwb.2023.28.3.1","DOIUrl":null,"url":null,"abstract":"The article presents the influence of a superficial strengthening system on the behaviour of AAC-block walls with thin bed joints and unfilled head joints. The strengthening system consisted of a high-strength fibreglass mesh applied to both wall surfaces with a mineral mortar reinforced with fibreglass. A series of strengthened and unstrengthened specimens was tested under diagonal compression according to ASTM E519-15 to determine their shear strength and stress-strain characteristics. The use of optical strain measurement made it possible to identify the failure mode for both types of the tested walls. The strengthening system changed the wall failure development, which was initiated by unfilled head joints in both cases. The application of the strengthening system on both wall surfaces improved the strength properties of the wall significantly. The load-bearing capacity of the specimens increased by nearly 90% and cracking of the walls occurred at loads about 50% higher compared to specimens with no superficial strengthening. The strengthened specimens exhibited a ductile behaviour after reaching the maximum bearing capacity. A simplified method for computing the cracking load and maximum load was also proposed, the results of which are consistent with the tests results.","PeriodicalId":55632,"journal":{"name":"Cement Wapno Beton","volume":"73 9","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency evaluation of a commercial superficial strengthening system applied to AAC-block walls under diagonal compression\",\"authors\":\"Marta Kałuża\",\"doi\":\"10.32047/cwb.2023.28.3.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents the influence of a superficial strengthening system on the behaviour of AAC-block walls with thin bed joints and unfilled head joints. The strengthening system consisted of a high-strength fibreglass mesh applied to both wall surfaces with a mineral mortar reinforced with fibreglass. A series of strengthened and unstrengthened specimens was tested under diagonal compression according to ASTM E519-15 to determine their shear strength and stress-strain characteristics. The use of optical strain measurement made it possible to identify the failure mode for both types of the tested walls. The strengthening system changed the wall failure development, which was initiated by unfilled head joints in both cases. The application of the strengthening system on both wall surfaces improved the strength properties of the wall significantly. The load-bearing capacity of the specimens increased by nearly 90% and cracking of the walls occurred at loads about 50% higher compared to specimens with no superficial strengthening. The strengthened specimens exhibited a ductile behaviour after reaching the maximum bearing capacity. A simplified method for computing the cracking load and maximum load was also proposed, the results of which are consistent with the tests results.\",\"PeriodicalId\":55632,\"journal\":{\"name\":\"Cement Wapno Beton\",\"volume\":\"73 9\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement Wapno Beton\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.32047/cwb.2023.28.3.1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement Wapno Beton","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.32047/cwb.2023.28.3.1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Efficiency evaluation of a commercial superficial strengthening system applied to AAC-block walls under diagonal compression
The article presents the influence of a superficial strengthening system on the behaviour of AAC-block walls with thin bed joints and unfilled head joints. The strengthening system consisted of a high-strength fibreglass mesh applied to both wall surfaces with a mineral mortar reinforced with fibreglass. A series of strengthened and unstrengthened specimens was tested under diagonal compression according to ASTM E519-15 to determine their shear strength and stress-strain characteristics. The use of optical strain measurement made it possible to identify the failure mode for both types of the tested walls. The strengthening system changed the wall failure development, which was initiated by unfilled head joints in both cases. The application of the strengthening system on both wall surfaces improved the strength properties of the wall significantly. The load-bearing capacity of the specimens increased by nearly 90% and cracking of the walls occurred at loads about 50% higher compared to specimens with no superficial strengthening. The strengthened specimens exhibited a ductile behaviour after reaching the maximum bearing capacity. A simplified method for computing the cracking load and maximum load was also proposed, the results of which are consistent with the tests results.
Cement Wapno BetonCONSTRUCTION & BUILDING TECHNOLOGY-MATERIALS SCIENCE, COMPOSITES
CiteScore
1.30
自引率
28.60%
发文量
0
审稿时长
>12 weeks
期刊介绍:
The Publisher of the scientific bimonthly of international circulation, entitled "Cement-Wapno-Beton" ["Cement-Lime-Concrete"], is the Fundacja Cement, Wapno, Beton [Foundation Cement, Lime, Concrete]. The periodical is dedicated to the issues concerning mineral setting materials and concrete. It is concerned with the publication of academic and research works from the field of chemistry and technology of building setting materials and concrete