Kenneth Nsafoa-Yeboah, Eric Tutu Tchao, Benjamin Kommey, Andrew Selasi Agbemenu, Griffith Selorm Klogo, Nana Kwadwo Akrasi-Mensah
{"title":"灵活的开放式网络操作系统架构,利用分解式软件定义光网络实现更高的可扩展性","authors":"Kenneth Nsafoa-Yeboah, Eric Tutu Tchao, Benjamin Kommey, Andrew Selasi Agbemenu, Griffith Selorm Klogo, Nana Kwadwo Akrasi-Mensah","doi":"10.1049/ntw2.12110","DOIUrl":null,"url":null,"abstract":"<p>The enhanced capacity of optical networks is a significant advantage within the global telecommunications industry. Optical networks provides transmission of information over large distances with reduced latency. However, the growing intricacy of network topologies poses a significant challenge to network adaptability, network resilience, device compatibility, and service quality in the contemporary era of technology and 5G networks. In light of these challenges, recent studies leverages on disaggregation in the context of Software Defined Network (SDN) and network service orchestrators as a viable remedy. Disaggregated optical systems offer SDON (Software-Defined Optical Networking) enhanced control options and third-party dynamism streamlining upgrades and diminishing single vendor dependency. Although, the advancement of disaggregation improves network flexibility and vendor neutrality of Software Defined Optical Networking (SDON), this improvement comes at the cost of reduced scalability and network controllability performance. The current research paper posits two potential resolutions to the aforementioned challenge. The authors present recommendations and an enhanced architecture that leverages Open Network Operating System (ONOS) containers and Kubernetes orchestration to improve scalability inside the Software-Defined Optical Networking (SDON) architecture. The suggested architectural design has underlining novel flow charts and algorithms that enhances scalability performance by 33% while also preserving flexibility and controllability in comparison to pre-existing SDON architectures. This architecture also makes use of the Mininet-Optical physical-layer architecture to simulate a real-time scenario, as well as yang models from the Open Disaggregated Transport Network (ODTN) working group, the pioneers of SDONs. A detailed analysis of the rules and procedural processes involved in the implementation of the proposed architecture. In order to demonstrate the practical application of this architectural framework to a real-world Software-Defined Optical Network (SDON) system, the pre-existing SDON ONOS architecture within the Optical Transport Domain Networking (OTDN) working group was adjusted and refined. This adaptation aimed to illustrate the use of ONOS in conjunction with established optical network systems, highlighting the advantages it offers.</p>","PeriodicalId":46240,"journal":{"name":"IET Networks","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ntw2.12110","citationCount":"0","resultStr":"{\"title\":\"Flexible open network operating system architecture for implementing higher scalability using disaggregated software-defined optical networking\",\"authors\":\"Kenneth Nsafoa-Yeboah, Eric Tutu Tchao, Benjamin Kommey, Andrew Selasi Agbemenu, Griffith Selorm Klogo, Nana Kwadwo Akrasi-Mensah\",\"doi\":\"10.1049/ntw2.12110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The enhanced capacity of optical networks is a significant advantage within the global telecommunications industry. Optical networks provides transmission of information over large distances with reduced latency. However, the growing intricacy of network topologies poses a significant challenge to network adaptability, network resilience, device compatibility, and service quality in the contemporary era of technology and 5G networks. In light of these challenges, recent studies leverages on disaggregation in the context of Software Defined Network (SDN) and network service orchestrators as a viable remedy. Disaggregated optical systems offer SDON (Software-Defined Optical Networking) enhanced control options and third-party dynamism streamlining upgrades and diminishing single vendor dependency. Although, the advancement of disaggregation improves network flexibility and vendor neutrality of Software Defined Optical Networking (SDON), this improvement comes at the cost of reduced scalability and network controllability performance. The current research paper posits two potential resolutions to the aforementioned challenge. The authors present recommendations and an enhanced architecture that leverages Open Network Operating System (ONOS) containers and Kubernetes orchestration to improve scalability inside the Software-Defined Optical Networking (SDON) architecture. The suggested architectural design has underlining novel flow charts and algorithms that enhances scalability performance by 33% while also preserving flexibility and controllability in comparison to pre-existing SDON architectures. This architecture also makes use of the Mininet-Optical physical-layer architecture to simulate a real-time scenario, as well as yang models from the Open Disaggregated Transport Network (ODTN) working group, the pioneers of SDONs. A detailed analysis of the rules and procedural processes involved in the implementation of the proposed architecture. In order to demonstrate the practical application of this architectural framework to a real-world Software-Defined Optical Network (SDON) system, the pre-existing SDON ONOS architecture within the Optical Transport Domain Networking (OTDN) working group was adjusted and refined. This adaptation aimed to illustrate the use of ONOS in conjunction with established optical network systems, highlighting the advantages it offers.</p>\",\"PeriodicalId\":46240,\"journal\":{\"name\":\"IET Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ntw2.12110\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ntw2.12110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Networks","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ntw2.12110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Flexible open network operating system architecture for implementing higher scalability using disaggregated software-defined optical networking
The enhanced capacity of optical networks is a significant advantage within the global telecommunications industry. Optical networks provides transmission of information over large distances with reduced latency. However, the growing intricacy of network topologies poses a significant challenge to network adaptability, network resilience, device compatibility, and service quality in the contemporary era of technology and 5G networks. In light of these challenges, recent studies leverages on disaggregation in the context of Software Defined Network (SDN) and network service orchestrators as a viable remedy. Disaggregated optical systems offer SDON (Software-Defined Optical Networking) enhanced control options and third-party dynamism streamlining upgrades and diminishing single vendor dependency. Although, the advancement of disaggregation improves network flexibility and vendor neutrality of Software Defined Optical Networking (SDON), this improvement comes at the cost of reduced scalability and network controllability performance. The current research paper posits two potential resolutions to the aforementioned challenge. The authors present recommendations and an enhanced architecture that leverages Open Network Operating System (ONOS) containers and Kubernetes orchestration to improve scalability inside the Software-Defined Optical Networking (SDON) architecture. The suggested architectural design has underlining novel flow charts and algorithms that enhances scalability performance by 33% while also preserving flexibility and controllability in comparison to pre-existing SDON architectures. This architecture also makes use of the Mininet-Optical physical-layer architecture to simulate a real-time scenario, as well as yang models from the Open Disaggregated Transport Network (ODTN) working group, the pioneers of SDONs. A detailed analysis of the rules and procedural processes involved in the implementation of the proposed architecture. In order to demonstrate the practical application of this architectural framework to a real-world Software-Defined Optical Network (SDON) system, the pre-existing SDON ONOS architecture within the Optical Transport Domain Networking (OTDN) working group was adjusted and refined. This adaptation aimed to illustrate the use of ONOS in conjunction with established optical network systems, highlighting the advantages it offers.
IET NetworksCOMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
5.00
自引率
0.00%
发文量
41
审稿时长
33 weeks
期刊介绍:
IET Networks covers the fundamental developments and advancing methodologies to achieve higher performance, optimized and dependable future networks. IET Networks is particularly interested in new ideas and superior solutions to the known and arising technological development bottlenecks at all levels of networking such as topologies, protocols, routing, relaying and resource-allocation for more efficient and more reliable provision of network services. Topics include, but are not limited to: Network Architecture, Design and Planning, Network Protocol, Software, Analysis, Simulation and Experiment, Network Technologies, Applications and Services, Network Security, Operation and Management.