离散时间到事件数据的比例概率危险模型

IF 1.9 3区 数学 Q1 MATHEMATICS, APPLIED
Axioms Pub Date : 2023-12-06 DOI:10.3390/axioms12121102
Maria Gabriella Figueiredo Vieira, Marcílio Ramos Pereira Cardial, Raul Y. Matsushita, E. Nakano
{"title":"离散时间到事件数据的比例概率危险模型","authors":"Maria Gabriella Figueiredo Vieira, Marcílio Ramos Pereira Cardial, Raul Y. Matsushita, E. Nakano","doi":"10.3390/axioms12121102","DOIUrl":null,"url":null,"abstract":"In this article, we present the development of the proportional odds hazard model for discrete time-to-event data. In this work, inferences about the model’s parameters were formulated considering the presence of right censoring and the discrete Weibull and log-logistic distributions. Simulation studies were carried out to check the asymptotic properties of the estimators. In addition, procedures for checking the proportional odds assumption were proposed, and the proposed model is illustrated using a dataset on the survival time of patients with low back pain.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"59 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proportional Odds Hazard Model for Discrete Time-to-Event Data\",\"authors\":\"Maria Gabriella Figueiredo Vieira, Marcílio Ramos Pereira Cardial, Raul Y. Matsushita, E. Nakano\",\"doi\":\"10.3390/axioms12121102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present the development of the proportional odds hazard model for discrete time-to-event data. In this work, inferences about the model’s parameters were formulated considering the presence of right censoring and the discrete Weibull and log-logistic distributions. Simulation studies were carried out to check the asymptotic properties of the estimators. In addition, procedures for checking the proportional odds assumption were proposed, and the proposed model is illustrated using a dataset on the survival time of patients with low back pain.\",\"PeriodicalId\":53148,\"journal\":{\"name\":\"Axioms\",\"volume\":\"59 2\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms12121102\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms12121102","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了离散时间到事件数据的比例赔率风险模型的发展。在这项工作中,考虑到右审查和离散威布尔分布和逻辑逻辑分布的存在,制定了关于模型参数的推论。通过仿真研究验证了估计量的渐近性。此外,还提出了检查比例赔率假设的程序,并使用腰痛患者生存时间的数据集说明了所提出的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proportional Odds Hazard Model for Discrete Time-to-Event Data
In this article, we present the development of the proportional odds hazard model for discrete time-to-event data. In this work, inferences about the model’s parameters were formulated considering the presence of right censoring and the discrete Weibull and log-logistic distributions. Simulation studies were carried out to check the asymptotic properties of the estimators. In addition, procedures for checking the proportional odds assumption were proposed, and the proposed model is illustrated using a dataset on the survival time of patients with low back pain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Axioms
Axioms Mathematics-Algebra and Number Theory
自引率
10.00%
发文量
604
审稿时长
11 weeks
期刊介绍: Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信