三乘三块鞍点问题的新块三角形预处理器

Pub Date : 2023-12-07 DOI:10.21136/AM.2023.0289-22
Jun Li, Xiangtuan Xiong
{"title":"三乘三块鞍点问题的新块三角形预处理器","authors":"Jun Li,&nbsp;Xiangtuan Xiong","doi":"10.21136/AM.2023.0289-22","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, to solve the three-by-three block saddle-point problem, a new block triangular (NBT) preconditioner is established, which can effectively avoid the solving difficulty that the coefficient matrices of linear subsystems are Schur complement matrices when the block preconditioner is applied to the Krylov subspace method. Theoretical analysis shows that the iteration method produced by the NBT preconditioner is unconditionally convergent. Besides, some spectral properties are also discussed. Finally, numerical experiments are provided to show the effectiveness of the NBT preconditioner.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new block triangular preconditioner for three-by-three block saddle-point problem\",\"authors\":\"Jun Li,&nbsp;Xiangtuan Xiong\",\"doi\":\"10.21136/AM.2023.0289-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, to solve the three-by-three block saddle-point problem, a new block triangular (NBT) preconditioner is established, which can effectively avoid the solving difficulty that the coefficient matrices of linear subsystems are Schur complement matrices when the block preconditioner is applied to the Krylov subspace method. Theoretical analysis shows that the iteration method produced by the NBT preconditioner is unconditionally convergent. Besides, some spectral properties are also discussed. Finally, numerical experiments are provided to show the effectiveness of the NBT preconditioner.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2023.0289-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0289-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对三乘三块鞍点问题,建立了一种新的块三角形(NBT)预条件器,它能有效避免将块预条件器应用于克雷洛夫子空间方法时,线性子系统系数矩阵为舒尔补码矩阵的求解难题。理论分析表明,NBT 预处理器产生的迭代方法是无条件收敛的。此外,还讨论了一些光谱特性。最后,通过数值实验证明了 NBT 预处理的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A new block triangular preconditioner for three-by-three block saddle-point problem

In this paper, to solve the three-by-three block saddle-point problem, a new block triangular (NBT) preconditioner is established, which can effectively avoid the solving difficulty that the coefficient matrices of linear subsystems are Schur complement matrices when the block preconditioner is applied to the Krylov subspace method. Theoretical analysis shows that the iteration method produced by the NBT preconditioner is unconditionally convergent. Besides, some spectral properties are also discussed. Finally, numerical experiments are provided to show the effectiveness of the NBT preconditioner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信