在虚空中航行:发现在基于联合学习的大数据处理中检测数据中毒攻击的研究空白:系统性文献综述

Mohammad Aljanabi
{"title":"在虚空中航行:发现在基于联合学习的大数据处理中检测数据中毒攻击的研究空白:系统性文献综述","authors":"Mohammad Aljanabi","doi":"10.58496/mjbd/2023/019","DOIUrl":null,"url":null,"abstract":"This systematic literature review scrutinizes the landscape of research at the intersection of federated learning, big data processing, and data poisoning attacks. Employing a meticulous search strategy across multiple databases, the study unveils a surge in annual scientific production, emphasizing a growing interest in federated learning and related fields. However, a critical research gap becomes evident during the investigation of data poisoning attacks specifically in the context of federated learning when processing big data. The most relevant keywords and a visually compelling word cloud further illuminate the prevailing themes and emphases within the literature, emphasizing the lack of explicit focus on detecting data poisoning attacks. This identified gap presents a significant avenue for future research, offering opportunities to enhance the security and robustness of federated learning systems against adversarial threats in large-scale data scenarios.","PeriodicalId":325612,"journal":{"name":"Mesopotamian Journal of Big Data","volume":"24 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating the Void: Uncovering Research Gaps in the Detection of Data Poisoning Attacks in Federated Learning-Based Big Data Processing: A Systematic Literature Review\",\"authors\":\"Mohammad Aljanabi\",\"doi\":\"10.58496/mjbd/2023/019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This systematic literature review scrutinizes the landscape of research at the intersection of federated learning, big data processing, and data poisoning attacks. Employing a meticulous search strategy across multiple databases, the study unveils a surge in annual scientific production, emphasizing a growing interest in federated learning and related fields. However, a critical research gap becomes evident during the investigation of data poisoning attacks specifically in the context of federated learning when processing big data. The most relevant keywords and a visually compelling word cloud further illuminate the prevailing themes and emphases within the literature, emphasizing the lack of explicit focus on detecting data poisoning attacks. This identified gap presents a significant avenue for future research, offering opportunities to enhance the security and robustness of federated learning systems against adversarial threats in large-scale data scenarios.\",\"PeriodicalId\":325612,\"journal\":{\"name\":\"Mesopotamian Journal of Big Data\",\"volume\":\"24 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mesopotamian Journal of Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58496/mjbd/2023/019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mesopotamian Journal of Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58496/mjbd/2023/019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇系统的文献综述仔细审视了联邦学习、大数据处理和数据中毒攻击交叉领域的研究前景。通过对多个数据库进行细致的搜索,该研究揭示了年度科学成果的激增,强调了对联合学习和相关领域日益增长的兴趣。然而,在数据中毒攻击的研究中,特别是在处理大数据时联邦学习的背景下,一个关键的研究差距变得明显。最相关的关键词和视觉上引人注目的词云进一步阐明了文献中的主流主题和重点,强调缺乏对检测数据中毒攻击的明确关注。这一确定的差距为未来的研究提供了一个重要的途径,为提高联邦学习系统在大规模数据场景中对抗对抗性威胁的安全性和鲁棒性提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Navigating the Void: Uncovering Research Gaps in the Detection of Data Poisoning Attacks in Federated Learning-Based Big Data Processing: A Systematic Literature Review
This systematic literature review scrutinizes the landscape of research at the intersection of federated learning, big data processing, and data poisoning attacks. Employing a meticulous search strategy across multiple databases, the study unveils a surge in annual scientific production, emphasizing a growing interest in federated learning and related fields. However, a critical research gap becomes evident during the investigation of data poisoning attacks specifically in the context of federated learning when processing big data. The most relevant keywords and a visually compelling word cloud further illuminate the prevailing themes and emphases within the literature, emphasizing the lack of explicit focus on detecting data poisoning attacks. This identified gap presents a significant avenue for future research, offering opportunities to enhance the security and robustness of federated learning systems against adversarial threats in large-scale data scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信