{"title":"在虚空中航行:发现在基于联合学习的大数据处理中检测数据中毒攻击的研究空白:系统性文献综述","authors":"Mohammad Aljanabi","doi":"10.58496/mjbd/2023/019","DOIUrl":null,"url":null,"abstract":"This systematic literature review scrutinizes the landscape of research at the intersection of federated learning, big data processing, and data poisoning attacks. Employing a meticulous search strategy across multiple databases, the study unveils a surge in annual scientific production, emphasizing a growing interest in federated learning and related fields. However, a critical research gap becomes evident during the investigation of data poisoning attacks specifically in the context of federated learning when processing big data. The most relevant keywords and a visually compelling word cloud further illuminate the prevailing themes and emphases within the literature, emphasizing the lack of explicit focus on detecting data poisoning attacks. This identified gap presents a significant avenue for future research, offering opportunities to enhance the security and robustness of federated learning systems against adversarial threats in large-scale data scenarios.","PeriodicalId":325612,"journal":{"name":"Mesopotamian Journal of Big Data","volume":"24 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating the Void: Uncovering Research Gaps in the Detection of Data Poisoning Attacks in Federated Learning-Based Big Data Processing: A Systematic Literature Review\",\"authors\":\"Mohammad Aljanabi\",\"doi\":\"10.58496/mjbd/2023/019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This systematic literature review scrutinizes the landscape of research at the intersection of federated learning, big data processing, and data poisoning attacks. Employing a meticulous search strategy across multiple databases, the study unveils a surge in annual scientific production, emphasizing a growing interest in federated learning and related fields. However, a critical research gap becomes evident during the investigation of data poisoning attacks specifically in the context of federated learning when processing big data. The most relevant keywords and a visually compelling word cloud further illuminate the prevailing themes and emphases within the literature, emphasizing the lack of explicit focus on detecting data poisoning attacks. This identified gap presents a significant avenue for future research, offering opportunities to enhance the security and robustness of federated learning systems against adversarial threats in large-scale data scenarios.\",\"PeriodicalId\":325612,\"journal\":{\"name\":\"Mesopotamian Journal of Big Data\",\"volume\":\"24 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mesopotamian Journal of Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58496/mjbd/2023/019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mesopotamian Journal of Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58496/mjbd/2023/019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Navigating the Void: Uncovering Research Gaps in the Detection of Data Poisoning Attacks in Federated Learning-Based Big Data Processing: A Systematic Literature Review
This systematic literature review scrutinizes the landscape of research at the intersection of federated learning, big data processing, and data poisoning attacks. Employing a meticulous search strategy across multiple databases, the study unveils a surge in annual scientific production, emphasizing a growing interest in federated learning and related fields. However, a critical research gap becomes evident during the investigation of data poisoning attacks specifically in the context of federated learning when processing big data. The most relevant keywords and a visually compelling word cloud further illuminate the prevailing themes and emphases within the literature, emphasizing the lack of explicit focus on detecting data poisoning attacks. This identified gap presents a significant avenue for future research, offering opportunities to enhance the security and robustness of federated learning systems against adversarial threats in large-scale data scenarios.